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Abstract
In this paper, we present the system developed by the team from
the New Technologies for the Information Society (NTIS) re-
search center of the University of West Bohemia, for the First
DIHARD Speech Diarization Challenge. The base of our sys-
tem follows the currently-standard approach of segmentation,
i-vector extraction, clustering, and resegmentation. Here, we
describe the modifications to the system which allowed us to ap-
ply it to data from a range of different domains. The main con-
tribution to our achievement is a Neural Network (NN) based
domain classifier, which categorizes each conversation into one
of the ten domains present in the development set. This classifi-
cation determines the specific system configuration, such as the
expected number of speakers and the stopping criterion for the
hierarchical clustering. At the time of writing of this abstract,
our best submission achieves a DER of 26.90% and an MI of
8.34 bits on the evaluation set (gold speech/nonspeech segmen-
tation).
Index Terms: speaker diarization, speaker change detection, i-
vector, statistics accumulation, agglomerative hierarchical clus-
tering, neural network classifier

1. Introduction
In this paper, we present our off-line Speaker Diarization (SD)
system [1, 2, 3] that was applied in the First DIHARD Speech
Diarization Challenge [4]. This system has been used previ-
ously primarily for telephone data. The DIHARD Challenge
brought an opportunity to apply our approach to a more diverse
set of data. However, this required certain modifications of our
system, which we describe in this paper. The most important
new enhancement of our system is an application of an NN-
based domain classifier that allows the system to automatically
identify the domain of each recording and to set the system’s
configuration accordingly. This proved to be essential during
the DIHARD Challenge, as the challenge data consist of mul-
tiple corpora with very different characteristics. Other modi-
fications include a different clustering process (agglomerative
rather than k-means) and a new speech activity detector.

The paper is organized as follows. Section 2 describes the
main components of our system. Section 3 introduces the do-
main classifier. Section 4 describes the speech activity detector.
Section 5 introduces the adult-child classifier. Finally, section 6
gives the results on the development and evaluation data.

2. Speaker Diarization System
Our system follows an i-vector-based approach, as introduced
in [5, 6, 7]: First, each recording is divided into short segments
and i-vectors are extracted. Then, a clustering method is used

in order to determine which parts of the signal were produced
by the same speaker. Finally, a GMM-based resegmentation is
performed to refine the positions of boundaries between speak-
ers.

For the DIHARD Challenge, we have also introduced a do-
main classifier that determines the source of each recording and
selects the most suitable system configuration. A diagram of
our diarization system is shown in Figure 1.

Figure 1: Diagram of the diarization process.

This section provides a description of the main steps of the
diarization process. The domain classifier and related domain-
dependent settings are described in section 3. The data we used
for training each part of the system are listed in section 6.1.

2.1. Feature Extraction

We used Linear Frequency Cepstral Coefficients (LFCCs),
Hamming window of length 25 ms with 10 ms shift. There
are 40 triangular filter banks linearly spread across the fre-
quency spectrum, and 25 LFCCs are extracted. The resultant
50-dimensional feature vector (Df = 50) also includes delta
coefficients.

2.2. Segmentation

In the segmentation step, each recording is split into multiple in-
dividual speech regions by breaking it on any non-speech longer
than 0.5 s. Then, one of the following two methods is applied to
further divide each long segment.

2.2.1. Fixed Length Segmentation

We simply cut the long speech regions at regular intervals, into
segments with a length of 2 s and with a 1 s overlap between
neighboring segments. If the remainder is shorter than 1 s, we
extend it to 1 s by adding frames from the preceding segment.

2.2.2. CNN-based Speaker Change Detection

Our second segmentation approach uses a Convolutional Neural
Network (CNN) to detect speaker changes [2]. The CNN was
trained as a regressor on spectrograms of acoustic signal, with
reference information L about existing speaker changes. The
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output signal P gives the probability of a speaker change at
each given moment (see Figure 2).

Figure 2: The input speech, given as a spectrogram, is pro-
cessed by the CNN into the output function P (probability of a
speaker change at the given time). The lower image shows the
reference function L and the output signal P .

Speaker changes are identified as peaks in the signal P (af-
ter normalization into interval < 0, 1 > for each conversation),
using non-maximum suppression with a window size of 10 fea-
tures. We also apply a threshold of 0.5 on the detected peaks in
order to remove insignificant local maxima. The signal between
two detected speaker changes is considered as one segment.

To ensure that each segment contains sufficient information
about the speaker, we set the minimum duration of each seg-
ment at one second. Shorter segments are discarded and the
decision about the speaker is left for the resegmentation step.

The network was only trained on one part of the develop-
ment set of the DIHARD corpus [8], specifically the YouthPoint
radio interviews, because they appear to contain the fewest tran-
scription errors.

2.3. Segment Description

Each segment is represented by an i-vector derived from the
supervector of accumulated statistics [9] - zeroth and first sta-
tistical moments of data related to a UBM as a GMM with
M = 1024 components. The dimensionality of this supervec-
tor is reduced by Factor Analysis (FA) [10] into Dw = 100 (de-
tails about the training of the total variability space matrix can
be found in [11, 12]) and we have used conversation-dependent
Principal Component Analysis (PCA) [7] to reduce the dimen-
sion further into 3 or 9 (depending on the specific data - see
Tab. 1).

2.3.1. Statistics Refinement

Because we cannot be certain that each segment only contains
the speech of a single speaker, not all data from a segment
should contribute to the supervector equally. With CNN-based
segmentation, we can reuse the output of the CNN (the proba-
bility of a speaker change in the signal) as an indication of the
suitability of each frame. The part of the audio segment in time
t with a high probability of a speaker change P (t) is less appro-
priate to represent the speaker than a part with a small value of
P (t). Thus, we use the value of 1− P (t) as a weighting factor
of the signal during the accumulation process [3]. However, no
such weighing is applied with fixed length segmentation.

2.4. Clustering

In the DIHARD corpus, the number of speakers in each record-
ing is unknown in advance. In the development set, it varies
between 1 and 10 speakers, depending on the domain. Thus,
we have chosen to primarily use the agglomerative hierarchical
clustering (AHC) algorithm. However, we make an exception
for two specific corpora where we are reasonably certain of the
number of speakers. For them, we use k-means instead.

2.4.1. Agglomerative Clustering

The system starts with each i-vector in a separate cluster and
then merges the closest pairs until it reaches a stopping point.
The distance between two clusters is calculated as the average
cosine distance1between each pair of i-vectors. The stopping
condition is a combination of maximum merging distance and a
minimum and a maximum number of clusters:

First, we perform AHC by merging the closest pairs of clus-
ters until the lowest distance exceeds a specific threshold. If the
resulting number of clusters is not within the expected range, we
adjust the stopping point so that we reach either the minimum
or maximum allowed number of clusters.

These parameters were selected on a per-corpus basis using
the development set. The target number of speakers is based
on the actual numbers in each conversation, while the optimal
threshold for the merging distance was found experimentally
(see section 6).

2.4.2. K-means Clustering

While the number of speakers in most of the DIHARD record-
ings varies even within each domain, two of the corpora in the
development set almost exclusively contain exactly two speak-
ers in each conversation. For these two domains, we simply ap-
plied k-means clustering into 2 clusters, using cosine distance
between i-vectors.

2.5. Resegmentation

To make the final diarization more precise, we refine it by re-
segmentation. We compute GMMs over the feature vectors, one
GMM for each speaker cluster. Then the whole conversation is
redistributed frame by frame according to the likelihoods of the
GMMs, filtered by a Gaussian window (length 75 ms with shift
50 ms) to smooth the peaks in the likelihoods. The number of
GMM components depends on the amount of data in each clus-
ter and ranges between 1 and 64.

3. Domain Classification
The DIHARD corpus [8] consists of data taken from several dif-
ferent domains, with very diverse characteristics - including the
number of speakers, the level of noise and general audio qual-
ity. As such, it is difficult to find a single system configuration
which would work well for the entirety of the data.

To resolve this issue, we have implemented a domain clas-
sifier - a neural network which receives a single i-vector calcu-
lated over the entire conversation and outputs the probability of
each of the 9 corpora in the DIHARD development set.

The network was implemented in TensorFlow2. It was
trained with one hidden layer (2048 neurons, tanh activation

1We have also investigated the use of a PLDA model [13, 14] for
calculating the similarity of two i-vectors, but it did not bring any im-
provements.

2https://www.tensorflow.org
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function) followed by 0.9 dropout and the output layer as soft-
max into 9 categories.

As the evaluation set contains additional unseen corpora,
we have also added a threshold (= 0.5) on the output probability
from the classifier and categorize lower-scoring conversations
as “unknown domain”. The accuracy of the trained classifier
was 95% on the development set.

4. Speech Activity Detection
The DIHARD Challenge consisted of two tracks - diarization
using gold speech segmentation, and diarization from scratch.
While our main efforts focused on the first track, we have also
submitted a system for the second track. This section describes
the speech activity detector we used for the purpose.

Our SAD system is an enhanced version of the approach
described in [15].

We use a neural network (depicted in Figure 3) consisting
of three parts: The first part computes a spectral flux or other
analogous spectral features and also contains a feature extractor.
The second part computes a score from contextual information.
And the last part functions as a decoder.

The first part is three standard CNN layers with ReLU ac-
tivation function, each followed by a pooling layer with max
pooling function, and ending with four standard fully-connected
NN layers with sigmoid activation functions. The second part
is a splicing that makes a long-temporal window and one single
neuron with linear activation function. The last part also uses
a long-temporal window and it finds the maximal score in the
window.

Figure 3: The schema of the NN for SAD, where C = convolu-
tion, P = pooling, D = dropout, L = fully-connected and S =
splicing layer.

Our SAD processes the logarithm of amplitude spectrum
that is computed from 512 samples long window with 160 sam-
ples step (hop). Thus, the spectrum has 256 features. Each CNN
layer uses a 3x3 window and it has 6 kernels. Fully-connected
layers in the second part have 256 neurons, except for the last
layer, which has 16 neurons. The window splices 201 feature
vectors. The window is symmetric, i.e. used time shifts are
from -100 to +100. The window in the third process is also
symmetric and the length of the window is 51.

In the training process, we added one layer with softmax
activation function and we trained all parts simultaneously by
means of cross-entropy criterion and SGD. Due to the long win-
dows, we used batches of 128 randomly selected continuous
parts of recordings, always 2000 spectral features long.

5. Adult-Child classification
During our experiments on the development set, we found that
the AHC approach described in section 2 performed very poorly
on data containing the speech of adults and very young chil-
dren (i.e. the SEEDLingS corpus [16]), to the extent where we
achieved the lowest DER when assigning all speech to the same
speaker. For this reason, we have tried to use a different ap-
proach for this particular domain.

We used the following simple approach: Only two speak-
ers are expected in the recording - one child and one adult. We
have prepared a separate UBM for children and for adults and
we classify each frame of the recordings as one of the two cat-
egories, using the same algorithm we use for resegmentation.
After this adult-child classification, we also use a regular reseg-
mentation using GMMs created from the specific conversation,
as described in section 2.5.

6. Experiments
This section describes our experiments on the development set
of the DIHARD Challenge, as well as our final results on the
evaluation set. The experiments mainly served for finding the
optimal system configuration for each of the individual corpora.
For details of the DIHARD corpus [8, 16], see the evaluation
plan [4].

6.1. Training Data

This section gives the complete list of the data we used for train-
ing each part of the system.

The speech activity detector was trained only on the DI-
HARD development set. For the domain classifier, we also
added 10 recordings from the LibriSpeech3 corpus as additional
LibriVox data.

CNN-based segmentation: The CNN was trained only on
the YouthPoint subset of the DIHARD development data.

i-Vector extraction: The UBM was trained on subsets
of LibriSpeech, AMI Corpus4, and the following ELRA and
LDC corpora: Speecon database (Child voices only) - Czech
(ELRA-S0298), UK English (ELRA-S0215) and US English
(ELRA-S0233), TIMIT Acoustic-Phonetic Continuous Speech
Corpus (LDC93S1), CSR-I (WSJ0) Complete (LDC93S6A),
CSR-II (WSJ1) Complete (LDC94S13A), RT-03 MDE Training
Data Speech (LDC2004S08), Santa Barbara Corpus of Spoken
American English Part II (LDC2003S06).

Child-adult classifier: The adult GMM was trained on the
same data as the general UBM for i-vector extraction (listed
above), with the exception of the Speecon child voices, which
were instead used to train the child UBM (150 children aged 8-
15). Both these models were further adapted on the SEEDLingS
development data, which were manually divided into clean
child and adult segments. For the child UBM, we also obtained
several other short recordings of small children (6 children be-
tween 3 months and 3 years old, total length 6 min), which were
added to the adaptation data. Note: To avoid over-training on
the development data, the adaptation of both UBM models on
SEEDLingS data was only used for diarization on the evalua-
tion set.

3http://www.openslr.org/12/
4http://groups.inf.ed.ac.uk/ami/download/
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6.2. Evaluation

The system performance was evaluated in terms of Diarization
Error Rate (DER), as defined by NIST [17]. On the devel-
opment set, we calculated this on a per-recording basis using
NIST’s md-eval-v21.pl script5. Results on the evaluation set
were given by the official scoring system.

Unlike usual practice, DIHARD Challenge submissions
were scored with no forgiveness collar around speaker bound-
aries, and overlapping speech was included in the evaluation.

6.3. Domain-specific settings

Because of our domain classifier, we were able to use differ-
ent system configurations for each of the nine development set
corpora and for unknown data. Here we describe the general ap-
proaches we selected for each domain. Specific experimentally-
chosen parameters are listed in Table 1.

SCOTUS, YouthPoint, SLX and RT-04S: For these corpora,
we used the AHC approach, as described in section 2.4.

ADOS and DCIEM: Both corpora had almost exclusively
exactly 2 speakers in each conversation. For this reason, we
could simply use k-means clustering with 2 clusters.

LibriVox: All recordings contained only 1 speaker. Thus,
we did not need to perform diarization, but simply used the in-
formation given by SAD or gold segmentation.

VAST: On this corpus, our system did not work well - it
achieved the lowest DER when all speech was assigned to a
single cluster. Thus, we simply used the same method as with
LibriVox data.

SEEDLingS: This corpus had the same issue as VAST. As
an alternate solution, we applied the child-adult classifier de-
scribed in section 5. This improved the SEEDLings DER on
the development set from 36.24% to 29.50%, but on the evalu-
ation set the difference was negligible.

Unknown: For unrecognized evaluation data, we’ve chosen
to use AHC with 3 target clusters.

Table 1: Experimentally chosen parameters (Thr. = threshold,
k-m = k-means, A/Ch = adult/Child segmentation) for each cor-
pus and segmentation approaches (fixed length win. or CNN).

corpus Thr.
SAD

Clus-
tering

No.
spk

Thr. AHC
fix. len./ CNN

PCA
dim

SEEDL. 0.60 A/Ch 2 - -
SCOTUS 0.95 AHC 5-10 0.64 9
DCIEM 1.15 k-m 2 - 3
ADOS 1.10 k-m 2 - 3
YouthP. 0.90 AHC 3-5 0.64/0.62 9
SLX 1.10 AHC 2-6 0.74/0.58 9
RT-04S -0.55 AHC 3-10 0.60/0.76 9
LibriVox 1.00 - 1 - -
VAST 0.55 - 1 - -
other 0.80 AHC 3 - 9

6.4. Results

Table 2 shows system results on the development set for each of
the nine corpora, with both types of segmentation. Table 3 then
presents the final results on the evaluation data for both tracks

5https://web.archive.org/web/20160110193918/http://www.itl.
nist.gov:80/iad/mig/tests/rt/2006-spring/code/md-eval-v21.pl

- diarization from gold segmentation (Track 1) and diarization
from scratch (Track 2).

Table 2: Average DER [%] on individual corpora of the DI-
HARD development set, for a system with fixed length segmen-
tation and a system with CNN-based speaker change detection
(both with resegmentation).

system fixed length CNN-SCD

SEEDLingS 29.50 29.50
SCOTUS 8.27 9.03
DCIEM 10.01 10.07
ADOS 17.00 16.95
YouthPoint 3.81 4.30
SLX 21.92 26.63
RT-04S 36.25 40.89
LibriVox 0.00 0.00
VAST 32.38 33.32

All 19.93 20.95

Table 3: Official results (DER [%] and MI [bits]) on the DI-
HARD evaluation data for both types of segmentation.

system track1 track2

Fixed length seg. DER: 26.90%,
MI: 8.34 bits

DER: 45.78%,
MI: 7.79 bits

CNN-SCD DER:27.12%,
MI: 8.31 bits

DER: 46.14%,
MI: 7.77 bits

7. Conclusion
In this paper, we presented a new version of our diarization sys-
tem, which was created for the DIHARD Diarization Challenge.
Using a domain classifier, we were able to use a different system
configuration for each subset of the challenge data.

Our system performed well on relatively clean data (Youth-
Point, SCOTUS, DCIEM). Other corpora proved more chal-
lenging. However, due to a limited amount of time and per-
sonal capacity, we were not able to focus on all possible areas
of improvement - such as the detection of crosstalk and environ-
mental noise, or better tuning of our Track 2 submissions. The
approach we used for the SEEDLingS child speech (section5)
is also rather simplistic and in need of further improvement.

Despite our system’s limitations, it has placed reasonably
well in the DIHARD Challenge. Our best Track 1 submission
achieved a DER of 26.90% and at the time of this writing, ranks
in the fifth place of the 14 teams on the leaderboard (by DER).
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