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Abstract
Hypernasality in cleft palate (CP) children is due to the velopha-
ryngeal insufficiency. The vowels get nasalized in hypernasal
speech and the nasality evidence are mainly present in low-
frequency region around the first formant (F1) of vowels. The
detection of hypernasality using Mel-frequency cepstral coef-
ficient (MFCC) feature may get affected because the feature
might not be able to capture the nasality evidence present in
the low-frequency region. This is due to the fact that the MFCC
feature extracted from high pitched children speech contains the
pitch harmonics effect of magnitude spectrum. The pitch har-
monics effect results in high variance for the higher dimensions
of MFCC coefficients. This problem may increase due to high
perturbation in pitch of CP speech. So in this work, a pitch-
adaptive MFCC feature is used for hypernasality detection. The
feature is derived from the cepstral smooth spectrum instead
of magnitude spectrum. A pitch-adaptive low time liftering is
done to smooth out the pitch harmonics. This feature when used
for the detection of hypernasality using support vector machine
(SVM) gives an accuracy of 83.45 %, 88.04 and %, 85.58 %
for /a/, /i/ and /u/ vowels respectively, which is better than the
accuracy of MFCC feature.
Index Terms: Hypernasality, Pitch adaptive Mel-frequency
cepstral coefficient, Cleft palate.

1. Introduction
The cleft palate (CP) is a congenital craniofacial disorder. The
speech of cleft palate (CP) children exhibit deviance due to
structural abnormalities, inadequate functioning of velopharyn-
geal port and mis-learning [1]. This speech deviance is univer-
sally reported in terms of resonance disorder, nasal air emission
and/or turbulence, consonant production errors and voice dis-
order [2]. Hypernasality in speech is an important resonance
disorder where excess nasality is heard during the production
of voice sounds, especially vowels. The nasality is heard due
to the coupling of nasal tract with the oral tract during the pro-
duction of speech. The structural abnormalities correction done
by the plastic surgeons may not be sufficient to restrict the nasal
tract coupling and hence, nasality remains present in repaired
CP children. This happens because of velopharyngeal insuffi-
ciency and mis-learning [3]. The intelligibility of CP speech
gets affected due to hypernasality. The evaluation of hypernasal
speech is needed for proper diagnosis of CP children by plastic
surgeons and speech-language pathologists (SLPs).

In the clinical environment, evaluation of hypernasality is
done perceptually by SLPs and the decision is confirmed by us-
ing some instrumental method of evaluation. The confirmation
is needed because the perceptual decision may sometimes vary
among the SLPs [4]. The variation happens due to the presence

of abnormalities in pitch, loudness, voice quality and/or articu-
lation in CP speech in conjunction with the hypernasality [5].
The instrumental method of evaluation may be direct or indi-
rect. In direct method, the instrumental techniques like X-Ray
(Cephalometry), videofluoroscopy, nasendoscopy, etc [6] are
used to observe the movement of velopharyngeal port. These
techniques may have radiation effect or may be invasive which
may be painful to the children. In indirect method, the aerody-
namics and/or acoustic measurements are done using the tech-
niques like accelerometry and nasometry to infer about velopha-
ryngeal activity. The nasometer is an example of such type of
device which is widely used clinically, to measure the nasality
in speech in terms of “nasalance” value. Indirect techniques
are radiation free, noninvasive but require extra sensing device
at the nose besides the microphone at the mouth. Due to afore-
mentioned limitations of both direct and indirect techniques, an-
other indirect technique based on the spectral analysis of speech
using digital signal processing is used by the researchers for the
evaluation of hypernasality. This technique is objective, non-
invasive and simple [4] and requires only a microphone and a
computer.

In spectral analysis method, the vowels /a/, /i/ and /u/ of
hypernasal speech are analyzed to find the spectral deviation
in these vowels compared to the normal speech vowels. The
presence of nasal peak in low-frequency region around the first
formant F1, reduction in strength of F1 and hence broadening
of F1 are some important spectral cues proposed for nasalized
vowels [7], [8] which are used by the researchers for the hy-
pernasality detection. The important works reported in the lit-
erature for hypernasality detection are based on Teager energy
operator [9], Teager energy operator plus Mel frequency cep-
stral coefficient (MFCC) [10], linear prediction cepstral coeffi-
cient (LPCC) [11], high spectral resolution group delay spec-
trum [4], set of features based on acoustic, noise and cep-
stral analysis, nonlinear dynamic and entropy measurements
[12], [13], [14], energy distribution [15], [16] and zero time
windowing [17], [18].

The detection of hypernasality can be done phoneme wise
or frame wise. In most of the above works, it is done phoneme
wise. The frame wise hypernasality detection work is done in
[10] using the MFCC feature. The accuracy of hypernasality de-
tection using MFCC feature may get affected because the stud-
ies [19] [20] shows that the MFCC feature gets affected for
high-pitched children speech. This happens because the Mel-
filter bank employed is unable to sufficiently smooth out the
pitch harmonics present in the magnitude spectrum of the win-
dowed speech signal. Hence, ripples appear in the smoothed
spectral envelope corresponding to MFCC feature in the lower
frequency region which gives the high variance for the higher
coefficients of MFCC feature. The variance may be higher in
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Figure 1: Linear prediction spectrum of normal and hypernasal vowels. (a) for /a/ vowel (b) for /i/ vowel (c) for /u/ vowel. Figure
shows the addition of extra formants, reduction in formant strength and shift in formant frequency for hypernasal vowels.

CP speech due to high pitch perturbation. Further, since the
nasality evidence is mainly present in the low-frequency region
around F1 in hypernasal speech and the ripples in smoothed
spectral envelope corresponding to MFCC feature also appears
in the low-frequency region, hence MFCC feature may not be
able to capture the nasality evidence effectively. This will also
affect the accuracy of hypernasality detection.

So in this work, a pitch adaptive Mel-frequency cepstral
coefficient (PAMFCC) feature is used for the hypernasality de-
tection. To compute the PAMFCC feature the Mel-filter bank is
employed on the cepstral smoothed spectrum rather than mag-
nitude spectrum. A pitch adaptive liftering of cepstral coeffi-
cients derived from magnitude spectrum is done to compute the
cepstral smoothed spectrum due to high perturbation in chil-
dren speech, especially CP speech [13]. The PAMFCC feature
is free from the pitch harmonics effect and hence can capture
the nasality evidence present in low-frequency of hypernasal
speech which may enhance the accuracy of hypernasality de-
tection.

The rest of the paper is organized as follows. Section 2
described about the CP speech database. In Section 3 the Pole-
zero analysis of hypernasal speech is presented. Section 4 de-
scribes the effect of pitch on MFCC feature. Section 5 describes
the steps of computing pitch-adaptive MFCC feature. Section 6
gives the experimental result and finally section 7 contains the
summary and conclusion of the work.

2. Speech database
There is a great challenge in the collection of CP speech for hy-
pernasality detection research due to the limited subjects, vari-
ability in their language accent and design of a stimuli list which
can capture the hypernasal speech characteristics. In this work,
data is collected from two group of children: 30 normal chil-
dren having normal speech and 30 repaired CP children having
hypernasal speech. Out of 30 children of each group, 18 are
boys and 12 are girls. The age range of children lies between
7-12 years. The native language of all children is Kannada, so
the data is recorded in the Kannada language which is a Dra-
vidian language spoken in the southern part of India. The stim-
uli considered here are /papa/, /pipi/ and /pupu/ as suggested
in [2] where the vowels /a/, /i/ and /u/ immediately follow the
pressure consonant /p/. The vowels are extracted from the stim-
uli. For that, the manual annotation of vowels is done using
Wavesurfer tool [21]. The database consists of total 542 nor-
mal, 464 CP phoneme /a/, 516 normal, 452 CP phoneme /i/ and

524 normal, 484 CP phoneme /u/. The data is recorded in the
sound-treated room of All Indian Institute of Speech and Hear-
ing (AIISH), Mysore, India [22] using Bruel & Kjaer sound
level meter (SLM) microphone. During the time of recording,
the instructor first utters the word and then the child repeats
the same. The recording is done at sampling frequency 44.1
kHz, 16 bps in .WAV format, which is down-samples at 16 kHz
for the analysis in this work. Perceptually each recorded sound
is judged separately by three SLPs for normal and hypernasal
speech classification. The recordings having common decision
from three SLPs are considered for the database. The percep-
tual judgment is considered as a ground truth for normal and
hypernasal speech classification.

3. Pole-zero analysis of hypernasal speech
In the hypernasal speech, the vowel spectrum gets affected due
to the addition of extra formant and anti-formant pairs [4]. The
natural frequencies of the nasal tract and the sinuses inside the
nasal tract decide the range of frequency in which addition of
formants and anti-formants happens. The range of natural fre-
quencies of nasal tract are in 450 to 650 Hz and 1800 to 2400
Hz [23] whereas it is around 400 Hz and 1300 Hz for the si-
nuses [24]. The extra formats give peaks in the spectrum and the
anti-formants reduces the strength of vowel formats and shift
them into the higher frequencies. The low-frequency nasal for-
mants around 300 Hz and 1000 Hz have greater strength than
the other formants in higher frequencies, hence these two for-
mants in low-frequency region are generally used as the nasal-
ity evidence in hypernasal speech [4]. Fig. 1(a)-(c) shows the
linear prediction (LP) spectrum of normal and hypernasal vow-
els /a/, /i/ and /u/ respectively. In the low-frequency region the
nasality evidence in the form of extra format, reduction, and
shifting of F1 is shown in Fig. 1. The proper capturing of these
low-frequency nasality evidence is required for hypernasality
detection.

4. Effect of pitch on MFCC
For the extraction of MFCC feature from the speech signal first
the framing the signal using overlapping Hamming/Hanning
windows is done and then magnitude spectrum of each frame
is computed using short-time Fourier transform (STFT). Next,
Mel-scale warping of magnitude spectrum is done using trian-
gular filters having nonuniform bandwidth. The discrete cosine
transform (DCT) of the log-energies obtained as an output of
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Figure 3: Plot showing the variance (in bar) for each coefficients of 13-dimensional MFCC feature extracted for normal and hypernasal
vowels from entire database. (a) for vowel /a/, (b) for vowel /i/ and (c) for vowel /u/ vowels
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Figure 2: Plots of smooth spectra corresponding to MFCC and
PAMFCC feature along with STFT magnitude spectrum for the
vowel /i/ of high pitch CP children speech

the Mel-filterbank, gives the MFCC feature. The MFCC fea-
ture model the magnitude spectrum and gives the smooth spec-
tral envelope representing the vocal tract characteristics. Hence
it is expected that the feature is free from the pitch harmonics
effect present in the magnitude spectrum. But the studies [19]
[20] shows that for high pitch signals like children speech, the
Mel-filter bank employed in the MFCC feature extraction is un-
able to sufficiently smooth out the pitch harmonics present in
the magnitude spectrum and hence the MFCC feature get af-
fected for high pitch signal. The smoothed spectral envelope
corresponding to affected MFCC feature contains ripples in the
lower frequency region. The ripples give the high variance
for the higher coefficients of MFCC feature. Fig.2 shows the
magnitude spectrum and the smoothed spectra corresponding to
MFCC feature for vowel /i/ of CP children speech. The smooth
spectra corresponding to the MFCC feature is derived by tak-
ing the 128-point inverse discrete cosine transform (IDCT) of
13-dimensional MFCC feature. Ripples in smoothed spectra
corresponding to MFCC feature in the lower frequency region
can be observed in Fig.2. The effect of ripples on the variance
of the 13-dimensional MFCC feature for normal and hypernasal
vowels /a/, /i/ and /u/ is shown in Fig.3 (a)-(c) in the form of bar
plot. It can be observed from the bar plot that the variance in
higher for higher coefficients (11-13 coefficients) of MFCC fea-
ture. Further, it can also be observed that the variance is more
for the hypernasal vowels compared to the normal vowels. The
reason may be high pitch perturbation in CP speech [13] which
can be proved by measuring the mean and standard deviation of
the pitch for all three vowels /a/, /i/ and /u/ from entire database.
Table 1 shows the mean and standard deviation (std) of the pitch

for normal and hypernasal vowels from the entire database. It
can be observed that the standard deviation (std) in pitch (which
shows the pitch variation) is high for both normal and hyper-
nasal vowels, but it is higher for hypernasal vowels compared
to the normal vowels. The pitch is measured using the method
proposed in [25]. The ripples in low-frequency smooth spectra
corresponding to the MFCC feature and high variance in higher
coefficients of MFCC feature may affect the classification accu-
racy of the normal and hypernasal speech.

Table 1: Mean and standard deviation (std) of pitch in normal
and hypernasal vowels present in entire speech database

Vowel Normal Hypernasal
mean std mean std

/a/ 282.57 62.10 299.89 63.05
/i/ 299.26 57.18 315.42 69.30
/u/ 279.94 48.18 311.47 95.04

5. Pitch-adaptive MFCC feature
The pitch-adaptive MFCC feature is originally proposed for ro-
bust children’s automatic speech recognition (ASR) in [26]. The
feature is free from the pitch harmonics effect and also deals
with the high pitch perturbation in CP speech because pitch
adaptive low time liftering of cepstral coefficient derived from
the magnitude spectrum is done while computing the feature.
The block diagram for the extraction of pitch-adaptive MFCC
feature is shown in Fig. 4. The procedure for deriving the pitch-
adaptive MFCC feature are as follows:

• Compute the log magnitude spectrum of each frame of
the speech signal using the short time Fourier transform
(STFT) with a fixed duration hamming window.

• Obtain the cepstral representation through the inverse
discrete Fourier transform (IDFT) of the magnitude
spectrum.

• Apply a pitch adaptive low time liftering on the cepstral
representation because it retains the periodicity of the
speech excitation. The pitch adaptive liftering smooth
the pitch harmonics. Take the duration of low-time lifter
L = Fs

F
, where Fs is the sampling frequency and F is

the average pitch value for the whole utterance. In this
work, the pitch of the utterance is detected using the zero
frequency filtered signal as proposed in [25].

• Take the discrete Fourier transform of liftered cepstrum
to obtain the smoothed cepstral spectrum.
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Figure 4: Block diagram for the extraction of the pitch-adaptive MFCC feature by applying adaptive-liftering for spectral smoothening.

• Employ Mel-filter bank on the smoothed cepstral spec-
trum and compute the log-energies for each filter.

• Take the discrete cosine transform (DCT) of the log-
energies to find the cepstral coefficients.

• The lower coefficients are pitch-adaptive MFCC feature.

Fig.2 shows the smoothed spectra corresponding to PAM-
FCC feature. It can be observed from the Fig.2 that the low-
frequency ripples are smoothed out in the PAMFCC features
hence, the feature can capture the low-frequency nasality evi-
dence in a better way and the variance for higher coefficients
in the feature also get reduced. The detection of hypernasality
using PAMFCC feature may give better classification accuracy.

6. Hypernasality detction using pitch
adaptive MFCC feature

In this section the hypernasality detection is performed using
the pitch-adaptive MFCC feature and the result is compared
with the result got from the MFCC feature. The results are pre-
sented in terms of the overall accuracy, specificity and sensitiv-
ity.

6.1. Experimental setup

The 13-dimensional MFCC and PAMFCC features are ex-
tracted for each frame of speech. The frame size of 20ms and
frame shift of 10ms is used for the framing of the speech. The
SVM classifier with RBF kernel is used for the classification.
The 5-fold cross validation of entire train database is done to
find the optimum value of the kernel parameters c and γ. The
training of the SVM Classifier is done with the 24 normal and
24 hypernasal children data and testing is done with the remain-
ing 6 normal and 6 hypernasal children data for each vowel.

6.2. Result

Table 2: Hypernasality detection accuracy for vowel /a/

Feature Accuracy (%) Sensitivity (%) Specificity (%)
MFCC 77.75 78.64 77.49
PAMFCC 83.45 80.39 85.57

Table 2, Table 3 and Table 4 show the values of accuracy, sen-
sitivity and specificity in percentage for vowels /a/, /i/ and /u/

Table 3: Hypernasality detection accuracy for vowel /i/

Feature Accuracy (%) Sensitivity (%) Specificity (%)
MFCC 84.21 82.15 86.80
PAMFCC 88.04 88.07 88.02

Table 4: Hypernasality detection accuracy for vowel /u/

Feature Accuracy (%) Sensitivity (%) Specificity (%)
MFCC 82.89 83.42 82.46
PAMFCC 85.58 82.80 87.91

respectively. The individual accuracies for MFCC and PAM-
FCC feature are shown in each tables. It can be observed that
PAMFCC feature gives the accuracy of 83.45 %, 88.04 % and
85.58% for the vowels /a/, /i/ and /u/ respectively which is better
than the accuracy obtained from the MFCC feature.

7. Summary and Future scope
In this work, a pitch-adaptive MFCC feature named as PAM-
FCC is used for hypernasality detection. This features is com-
puted from the cepstral smoothed spectrum of magnitude spec-
trum instead of magnitude spectrum. A pitch adaptive way of
choosing the size of low time liftering window is used which
insures the cepstral smooth spectrum free from the pitch har-
monics effect and also deals with the high pitch perturbation
in CP speech. In comparison to MFCC feature, the PAMFCC
feature capture the low-frequency nasality evidence present in
hypernasal children speech in a better way. The feature when
used for hypernasality detection using SVM classifier, gives the
better accuracy comparision to the MFCC feature.
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