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Abstract
Automatic Gender Recognition (AGR) is the task of identifying
the gender of a speaker given a speech signal. Standard ap-
proaches extract features like fundamental frequency and cep-
stral features from the speech signal and train a binary classi-
fier. Inspired from recent works in the area of automatic speech
recognition (ASR), speaker recognition and presentation attack
detection, we present a novel approach where relevant features
and classifier are jointly learned from the raw speech signal
in end-to-end manner. We propose a convolutional neural net-
works (CNN) based gender classifier that consists of: (1) con-
volution layers, which can be interpreted as a feature learning
stage and (2) a multilayer perceptron (MLP), which can be in-
terpreted as a classification stage. The system takes raw speech
signal as input, and outputs gender posterior probabilities. Ex-
perimental studies conducted on two datasets, namely AVspoof
and ASVspoof 2015, with different architectures show that with
simple architectures the proposed approach yields better system
than standard acoustic features based approach. Further analy-
sis of the CNNs show that the CNNs learn formant and funda-
mental frequency information for gender identification.
Index Terms: automatic gender recognition, convolutional
neural networks, multilayer perceptron, end-to-end training

1. Introduction
Automatic Gender Recognition (AGR) task focuses on identi-
fying the speaker gender given the speech signal. AGR systems
are useful for different speech applications, such as reducing
search space in speaker recognition, building gender specific
acoustic models for automatic speech recognition and under-
standing human-computer interactions.

Acoustic differences in the speech signal due to gender
can be mainly attributed to two physiological aspects of the
speech production system [1, 2]. More precisely, one related
to the voice source. Males typically have lower fundamental
frequency than females. This is mainly due to differences in the
size of the vocal folds. The other related to the vocal tract sys-
tem. Males typically have longer vocal tract than females. As
a consequence formant frequency locations shift. Building on
this point, typically in the literature [3, 4, 5, 6, 7, 8], two broad
classes of features are used for this task: fundamental frequency
(F0) and short term features like mel frequency cepstrum coef-
ficients (MFCCs). There are also works that have investigated
high level representations like Gaussian mixture model super-
vector [9, 8] and i-vectors [10].

As for the classifiers used to classify these features in AGR
task, in literature, logistic regression, linear regression, random
forests and support vector machines are employed [6, 7, 8, 9].
In [6], it is indicated that random forest trained on simple F0
and MFCC features performs close to the state-of-the-art sys-
tem devised for 3-way classification problem (between male,

female and child speech), which is a fusion of six subsystems.
In this paper, rather than approaching the problem of gen-

der recognition in a divide and conquer manner, we aim to
develop end-to-end automatic gender recognition system that
learns both the relevant features and the classifier directly from
the raw speech signal. This is motivated for recent successes
in directly modeling raw speech signal for various tasks, such
as speech recognition [11, 12, 13], emotion recognition [14],
voice activity detection [15], presentation attack detection [16],
speaker recognition [17]. In particular, we build upon recent
works [12, 16, 17] to investigate the following:

1. how well such an end-to-end AGR system based on con-
volutional neural networks (CNNs) can identify genders,
when compared to short-term spectral feature and funda-
mental frequency based AGR systems?

2. what kind of information the CNN models for AGR?

Towards that we present investigations on two corpora, namely,
AVspoof and ASVspoof 2015. Through in-domain and cross-
domain studies we demonstrate the potential of the approach.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the proposed approach. Section 3 and Section 4
presents the experimental setup and results, respectively. Sec-
tion 5 presents an analysis of the trained CNNs. Finally, we
conclude in Section 6.

2. Proposed Approach
Figure 1 illustrates the proposed approach. The proposed archi-
tecture is composed of several filter stages, followed by a clas-
sification stage. This architecture was first proposed for speech
recognition [11, 12] and later successfully applied for presenta-
tion attack detection [16] and speaker verification [17].

Figure 1: Overview of convolutional neural network architec-
ture.

The input to the system sct is raw speech signal, with the
context of c frames (sct = st−c ... st ... st+c) and the output of
the system is the posterior probability P (i | sct ), the probability
of the gender class given the speech segment.

The filter stage has several hyper-parameters namely, kW ,
the temporal window width as an input to each convolutional
layer, dW , the shift of the temporal window at each convo-
lutional layer, mp, the max pooling kernel width, c, the con-
text, nf , the number of filters in convolutional layer and Lr, the
learning rate. In addition, clNhu is the hyper-parameter for the
number of hidden units in classification stage.
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The feature and classifier stages are jointly trained using
stochastic gradient descent algorithm with cross entropy based
error criterion. All the hyper-parameters are determined dur-
ing the training, based on frame level classification accuracy on
validation data.

3. Experimental Setup
This section first provides a description of the databases and
protocols, and then describes the systems developed.

3.1. Databases and protocols

We conduct AGR studies on subsets of genuine samples ex-
tracted from two databases designed for spoofing tasks: the
Audio-Visual Spoofing (AVspoof) [18] database and the Au-
tomatic Speaker Verification Spoofing (ASVspoof) 2015 [19]
database.

The splitting of the subsets of AVspoof was the same as the
one originally provided, while we were constrained to modify
the protocol of the ASVspoof database, as the gender informa-
tion was not given for the evaluation set. We thus used the origi-
nal development set as our evaluation set and randomly split the
speakers of the original training set to create a training and de-
velopment set. The distribution of the number of speakers and
utterances for datasets is shown in Table 1.

Table 1: Distribution of the number of speakers and utterances
for AVspoof and ASVspoof databases on training, development
and evaluation sets.

Database set speakers utterances style
female male female male pass read free

AVspoof train 4 10 1504 3469 835 2900 1238
dev 4 10 1434 3561 840 3020 1135
eval 5 11 1722 3854 964 3412 1200

ASVspoof train 20 15 1999 1498 - - -
dev 7 5 700 500 - - -
eval 26 20 5351 4053 - - -

The training set was used to optimize the parameters of the
classifier. The evaluation was based on the performance of our
system with Recognition Rate (RR) computed on the evaluation
set. More precisely, frame level gender probabilities are com-
bined over the utterance and final decision is made based on the
utterance level probability score.
3.2. Systems

We first present a description of the baseline systems and then
the proposed systems.

3.2.1. Baseline systems

For the baseline system, we adopted divide and conquer ap-
proach. That is, we first extracted the features from the speech
signal, and then passed them to the classifier. We used the HTK
toolkit [20] for cepstral feature extraction and snack toolkit [21]
for fundamental frequency extraction. The MFCC features were
computed with a frame size of 25 ms and a frame shift of 10
ms. The fundamental frequency features were computed with
a frame size of 40ms and a frame shift of 10ms. We used
quicknet tool [22] to train artificial neural networks (ANNs)
with one hidden layer and various number of hidden units
(50,100,250,500,750,1000). The ANN with best accuracy on
the cross validation data was selected.

Two sets of baseline systems were developed. First, base-
line system that models 38 dimensional MFCC features with
four frames preceding and four frames following context (in-
put dimension 38x9 = 342). We refer to this system as ANN1.

Second baseline system that models 38 dimensional MFCC fea-
tures and one dimensional fundamental frequency features with
four frames preceding and four frames following context (input
dimension 39x9 = 351). We refer to this system as ANN2.

3.2.2. Proposed systems

For the proposed system, we trained the CNN-based P (i | sct )
estimator using raw speech signal. As we tried to recognize
the gender from the given speech signal, sct was the raw speech
segment and i was the gender label (female, male). The only
preprocessing step was to remove the silent frames at the begin-
ning and at the end of the speech sample with an energy-based
voice activity detection algorithm. Each sequence sct fed to the
CNN was normalized by removing the mean (of the sequence
sct ) and dividing (each value in sequence sct ) by standard devia-
tion. Torch7 toolbox [23] was used for training the systems.

Table 2: The ranges of hyper-parameters for the grid search.
Note that in our architectures, only one hidden layer MLPs with
various units (clNhu) are used.

Parameters Units Range
Context (c) frames 5-20
Kernel width of first convolution (kW1) samples 10-1500
Kernel shift of first convolution (dW1) samples 10-500
Number of filters in first conv (nf1) filters 5-100
Max Pooling kernel width (mp1) frames 2-10
Number of hidden units in classifier (clNhu) units 10-200
Learning rate (Lr) 0.0001-0.01

As detailed in Section 2, the hyper-parameters that needed
to be set were: c, nf , dW , kW , mp, clNhu, Lr. These
hyper-parameters were chosen based on the frame-level per-
formance achieved on the development set during the training
phase on AVspoof database. The hyper-parameter ranges which
were considered as coarse grid search are shown in Table 2.
The hyper-parameter values for selected three architectures are
shown in Table 3.

Table 3: The fixed hyper-parameters for the one convolution
layered cnn1, two convolution layered cnn2 and three convolu-
tion layered cnn3 architectures

arch kW dW nf clNhu c Lr mp
cnn1 360 20 20 20 15 0.0001 5
cnn2 360/65 20/1 20/10 20 15 0.0001 2/2
cnn3 60/25/12 10/5/2 100/10/2 50 15 0.0001 2/2/2

4. Results
We performed two set of studies: (i) in-domain study where
the systems are trained and tested on the same corpus. We
denote the in-domain studies as AVspoof and ASVspoof and
(ii) cross-domain study where the system is trained on one cor-
pus and tested on another corpus. In other words, training the
AGR system on AVspoof data and testing on ASVspoof. Simi-
larly training the AGR system on ASVspoof data and testing on
AVspoof data. We denote these studies as AVtrain-ASVtest and
ASVtrain-AVtest. Table 4 presents the results for in-domain and
cross-domain studies.

In the in-domain studies, we can observe that all the
three proposed systems outperform MFCC-based (ANN1) and
MFCC+F0 based (ANN2) system. Comparison across the
CNN-based systems shows that two convolution layers are
needed to effectively identify gender. The performance with
long kernel width (cnn2) and short kernel width (cnn3) are com-
parable.
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Table 4: Comparison of the baseline systems and the proposed
systems in terms of RR

Systems AVspoof ASVspoof AVtrain- ASVtrain-
ASVtest AVtest

ANN1 86.0 93.5 55.8 82.8
ANN2 86.9 83.6 54.9 76.3
cnn1 91.3 99.6 89.7 39.0
cnn2 98.5 99.8 94.7 53.2
cnn3 97.2 99.8 89.4 39.2

In the cross-domain studies, the performance of the sys-
tems degrade. We observe two opposite trends. More precisely,
for standard acoustic feature based system, the system trained
on ASVspoof data generalizes better than the system trained
on AVspoof data. Whilst for the proposed systems, the system
trained on AVspoof generalizes better than the system trained
on ASVspoof. The poor generalization of the baseline systems
trained on AVspoof data could potentially be due to low number
of speakers in the training set. The poor generalization of CNN
based systems trained on ASVspoof data could be due to acous-
tic mismatch. ASVspoof data is collected in anechoic recording
chamber while AVspoof data is collected in realistic conditions
with multiple devices. An examination of the results showed
that the performance was poor for the portion of AVspoof test
data which was collected with smartphones. Together these re-
sults indicate that the proposed approach can yield robust sys-
tem with less number of speakers but is sensitive to acoustic
mismatch.

Overall, in both in-domain and cross-domain studies, ANN1
yields better baseline. Whilst cnn2 consistently yields the best
system across all the systems, except for ASVtrain-AVtest.

5. Analysis
In this section, we first analyze the frequency response of the
filters learned in the first convolution layer and then analyze the
response these filters to the input speech.

5.1. Cumulative Frequency Response of Learned filters

We analyze the spectral regions that are being modeled by the
filters in the first convolution layer by computing cumulative
frequency response, similar to [12]:

Fcum =
M∑

m=1

Fm

‖Fm‖2
, M: number of filters (1)

where Fm is the magnitude spectrum of filter m.
Figure 2 presents the cumulative response for cnn2 and

cnn3 trained on AVspoof corpus. It can be observed that for
cnn2 the main emphasis is on low frequencies, while for cnn3
the emphasis is spread across frequencies, including low fre-
quencies. These differences in the cumulative frequencies can
be attributed to the different kernel widths used by these sys-
tems.
5.2. Response of the filters to input speech signal

In order to understand how these filters respond to input speech,
we performed an analysis using speech from American English
Vowels dataset [24]. American English Vowels dataset consists
of recordings for 12 vowels (/ae/, /ah/, /aw/, /eh/, /er/, /ey/, /ih/,
/iy/, /oa/, /oo/, /uh/, /uw/), for each of the speakers (50 men, 50
women, 29 boys, 21 girls). In addition, in [25], the frequency
range for the F0 and formants were calculated and presented for
each utterance in the dataset.

Frequency [Hz]
0 1000 2000 3000 4000 5000 6000 7000 8000

N
or

m
al

iz
ed

 M
ag

ni
tu

de

#10-3

0

1

2

3

4

5

6

7

8
Cumulative Response

Frequency [Hz]
0 1000 2000 3000 4000 5000 6000 7000 8000

N
or

m
al

iz
ed

 M
ag

ni
tu

de

#10-3

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Cumulative Response

Figure 2: Cumulative frequency responses of first convolution
layer of cnn2 (top) and cnn3 (bottom) trained on AVspoof cor-
pus.

The response of the filters to the input speech was calcu-
lated in the following manner:

1. sct was taken as the input speech segment. For the sake
of simplicity, a window size of 30 ms similar to the one
used in standard short term processing, was used.

2. The successive windows of kW samples (360 samples
for cnn2 and 60 samples for cnn3) interspaced by dW
samples (20 samples for cnn2 and 10 samples for cnn3)
were taken from sct .

3. For each of these successive window signals (st), the
output of the filters yt to the input speech signal st =
st−(kW−1)/2 ... st+(kW−1)/2 was estimated as

yt[m] =

l=+(kW−1)/2∑

l=−(kW−1)/2

fm[l].st+l (2)

where fm denotes the mth filter in first convolution layer
and yt[m] denotes the output of the mth filter at time
frame t.

4. The frequency response St of the input signal st was
estimated as

St = |
M∑

m=1

yt[m].Fm|, (3)

where Fm is the complex Fourier transform of filter fm.

5. average filter response for the input speech segment (sct )
was calculated by summing all frequency responses at
all frames and by dividing it to the number of successive
windows in the input speech segment.
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The spectrum estimation process was originally developed
in [12] and has been applied in other studies such as [17] to
understand the frequency information captured by the CNNs.
We performed filter response analysis for different vowels and
speakers.
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Figure 3: Average filter response for 30ms speech of /iy/ utterred
by male speaker m01 for cnn2 (top) and cnn3 (bottom).

Table 5: The value range for F0,F1 and F2 (in Hz) for phone
/iy/ utterances in American English Vowels dataset [25].

Utterance F0 interval F1 interval F2 interval
m01iy 96-216 305-402 2049-2600
w10iy 155-275 331-531 2129-2654

Figure 3 and Figure 4 shows the filter response of 30 ms
speech of /iy/ uttered by male speaker m01 and female w10,
respectively. In the figures, information such as fundamental
frequency F0, first formant F1 and second formant F2, which
clearly appear as spectral peaks have been marked. For ref-
erence purpose, Table 5 presents the F0 interval, F1 interval
and F2 interval that were established in [25] for the utterances
m01iy and w10iy. It can be observed that cnn2, which has a
kernel width of 360 samples (≈ 22 ms), models both F0 and for-
mant information for gender identification. Whilst cnn3, which
has a kernel width of 60 samples (≈ 4 ms), models only formant
information. This explains why cnn2 yields a better system than
cnn3. We have observed similar trends across different vowels
and speakers. A quantitative analysis is in progress. It is worth
mentioning that short kernel width CNN modeling only formant
information is consistent with speech recognition studies [12],
while long kernel width CNN modeling fundamental frequency

Frequency [Hz]
0 1000 2000 3000 4000 5000 6000 7000 8000

N
or

m
al

iz
ed

 M
ag

ni
tu

de

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Filter Response

X: 250
Y: 0.006711

X: 468.8
Y: 0.008543

X: 2609
Y: 0.006479

Frequency [Hz]
0 1000 2000 3000 4000 5000 6000 7000 8000

N
or

m
al

iz
ed

 M
ag

ni
tu

de

#10-3

0

1

2

3

4

5

6

7
Filter Response

X: 484.4
Y: 0.006147

X: 2875
Y: 0.006955

Figure 4: Average filter response for 30ms speech of /iy/ utterred
by female speaker w10 for cnn2 (top) and cnn3 (bottom).

is consistent with speaker recognition studies [17]. The dis-
tinctive observation here is modeling of both F0 and formant
information by a single CNN.

6. Conclusion

In this paper, we investigated an end-to-end gender identifi-
cation approach using CNNs. We compared it against the
approach of using cepstral coefficients and fundamental fre-
quency to identify genders. Experimental studies on two cor-
pora, namely, AVspoof and ASVspoof showed that the end-
to-end approach consistently yields a better system, except in
the case of acoustic mismatch condition. An analysis of the
trained CNNs showed that depending upon the kernel width of
the first convolution layer either formant information or both
fundamental frequency and formant information is modeled by
the CNNs for gender recognition. In recent years, features such
as i-vectors have been used for gender recognition [10]. In [26],
a comparison between the proposed CNN-based approach and i-
vector based approach has been investigated for identifying gen-
der under noisy conditions. It has been found that in both noisy
condition training and denoised condition training the proposed
CNN-based approach yields significantly better system.
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