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Abstract
In the past, the performance of machine learning algorithms de-
pended heavily on the representation of the data. Well-designed
features therefore played a key role in speech and paralinguis-
tic recognition tasks. Consequently, engineers have put a great
deal of work into manually designing large and complex acous-
tic feature sets. With the emergence of Deep Neural Networks
(DNNs), however, it is now possible to automatically infer
higher abstractions from simple spectral representations or even
learn directly from raw waveforms. This raises the question if
(complex) hand-crafted features will still be needed in the fu-
ture. We take this year’s INTERSPEECH Computational Par-
alinguistic Challenge as an opportunity to approach this issue
by means of two corpora – Atypical Affect and Crying. At
first, we train a Recurrent Neural Network (RNN) to evaluate
the performance of several hand-crafted feature sets of varying
complexity. Afterwards, we make the network do the feature
engineering all on its own by prefixing a stack of convolutional
layers. Our results show that there is no clear winner (yet). This
creates room to discuss chances and limits of either approach.
Index Terms: Computational Paralinguistics, Deep Neural
Networks, Hand-crafted Features, End-to-end Learning

1. Introduction
Machine learning deals with the problem of designing clever
algorithms that allow a computer to learn from and make pre-
dictions on data. Since the representation of the data defines
the ”playground” on which an algorithm operates, it plays a key
role for success or failure [1]. In paralinguistic computation
finding an optimal set of the most important acoustic features
was therefore declared as the ”holy grail” [2]. Yet, the huge
number of possible features that can be extracted from a speech
signal make it a challenging task. And in fact, during the last
decade we have seen increasingly large feature sets. The base-
line set of this challenge, for instance, has grown from initially
384 attributes [3] to more than 6k [4]. Sets of this kind achieve
considerable results across various recognition tasks like emo-
tion, affect, and personality [5]. As a downside, usually only a
subset of the parameters is actually relevant to a specific task.

In the recent years, the availability of massive labeled
data sets along with increased computational power and im-
proved algorithms, have helped Deep Learning (DL) to a break-
through in various fields like object detection or speech recogni-
tion [1]. In paralinguistic computation, Deep Neural Networks
(DNNs) now provide an alternative to Support Vector Machines
(SVMs), which had dominated the field for many years. Their
use, however, is not limited to the categorization of sound sam-
ples based on pre-extracted features. DNNs are even able to
discover a suited representation of the data itself – a problem
known as Representation or Feature Learning [6]. The advan-
tage is obvious: instead of putting effort into the development

of hand-crafted features (which may or may not prove itself in
practice), we make the machine do the job of finding the ”holy
grail”.

Against this background and in view of the rapid progress
we currently see in DL applications, we can naturally ask what
role hand-crafted feature sets will play in paralinguistic com-
putation in the future. In the following we want to approach
this question by comparing the performance of manually de-
signed features versus automatically learned representations
within the INTERSPEECH Computational Paralinguistic Chal-
lenge (ComParE), namely the Atypical Affect and Crying sub-
challenge [7].

2. Related Work
In 2004 several research groups (including our lab) started a co-
operation under the named CEICES (Combining Efforts for Im-
proving automatic Classification of Emotional user States) [8].
Amongst other things, the cooperation had set itself the task of
finding an optimal set of the most important independent fea-
tures for emotional speech recognition. Extensive testing on
base of more than 4k features showed a comparable perfor-
mance of the examined feature types [2]. Therefore, it became
common practice to extract rather more than too little features.
Nowadays, open-source tools like Emovoice [9] and OpenS-
MILE [10] extract thousands of acoustic parameters. The of-
ficial feature set of ComParE, for instance, bundles more than
6k features parameterizing a speech chunk in terms of voice
quality, loudness, harmonicity, spectral sharpness, pitch and
many others [4]. An attempt for a more compact, yet generic
feature set is the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) [11]. It comprises 56 parameters (88 in the ex-
tended version), which have been selected based on their proven
value in former studies, as well as, their theoretical significance.
Tests show that GeMAPS achieves results comparable (some-
times superior) to the performance of larger sets.

At the Eating Condition sub-challenge in 2015, Milde and
Biemann [12] applied Deep Learning (DL) to predict the type
of food a speaker is eating and achieved a 15 % improvement
over the baseline. Particularly interesting here is that – whereas
the baseline was computed on basis of 6k features – the authors
computed only a 40-dimensional spectrogram, which they fed
into a Convolutional Neural Network (CNN). Although, a spec-
trogram is still a hand-crafted feature set, it has been used in
sound analysis since the 1970s1 and does not take any task-
specific knowledge into account. Systems that go straight from
a simple spectral representation (or the raw signal as we will
soon see) to the target class are called end-to-end2. The key

1The breakthrough of spectral analysis began in 1965 with the dis-
covery of the fast Fourier transform by Cooley and Tukey.

2Note that the term end-to-end is relatively loosely defined and de-
pending on context can mean both: learning from the raw audio or from
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Figure 1: Percentage of DL systems presented at ComParE be-
tween 2012 and 2017. End-2-end systems use raw or a simple
spectral representation as input. Feature-based systems a com-
plex feature set like ComParE.

innovation here is that the classifier discovers a suited represen-
tation of the data by itself.

The finding that DNNs have the potential to learn robust
feature representations [13, 14] has led to breakthroughs in var-
ious audio classification tasks such as speech recognition [15],
sound event classification [16] and automatic music transcrip-
tions [17]. Actually, the step of transforming the audio signal
into frequency space can be skipped, too. SoundNet [18], for in-
stance, applies a student-teacher training procedure to transfer
visual knowledge from a large number of videos into the sound
modality. The learned features can outperform state-of-the-art
features in classifying acoustic scenes. Like in visual process-
ing, the ability to learn from raw input is achieved through a
stack of convolutional layers. The networks proposed by Wei
and colleagues [19] consist of up to 34 of such layers and match
the performance of models using spectral features in an environ-
mental sound recognition task [20].

In light of the above, it is not surprising that the popularity
of end-to-end systems has increased tremendously. A trend well
reflected by the ComParE challenge: last year, for the first time,
more DL systems opted for an end-to-end approach rather than
using a complex feature set (see Figure 1). Yet, we need to real-
ize that – just like there is not ’the’ set of hand-crafted features
– there is not ’the’ network (yet). The DL system proposed by
Gosztolya and colleagues [21], for instance, significantly im-
proved the fusion baseline at last year’s Cold sub-challenge.
Applied to the Addressee task, however, it did not even sur-
pass the standard baseline (ComParE set + SVM). Instead of
learning a new representation from the audio itself, Amiripar-
ian et al. [22] extract spectrograms, which they pass into net-
works trained for image classification and use the activations
of the fully-connected layers as features. This yielded an im-
provement of almost 10 % at last year’s Snore sub-challenge.
Looking at this year’s baselines [7] we can see that the per-
formance of the proposed end-to-end approach (End2You [23])
stays behind the other systems in all sub-challenges. AuDeep-
[24], another DL approach, performs better, but only beats the
other systems on the Heartbeat dataset. Such diverse results
make it desirable to estimate under which conditions end-to-
end learning seems promising and when it is better to draw on
a conventional feature set.

A systematic comparison of learned versus hand-
engineered features in the context of emotional speech
recognition is presented in [25]. In their work, Trigeorgis and
colleagues opt for a time-continuous prediction of arousal and
valence with Long-Short-Term Memory (LSTM) networks and
let features learned by a CNN compete against two standard
sets, namely eGeMAPS [11] and a simplified version of
ComParE [4]. On both dimensions, the end-to-end approach

a spectral decomposition, usually a spectrogram.

Table 1: Overview of the feature sets considered in this study
ordered by complexity (LLD: low-level descriptors, SSF: supra-
segmental features). Features are input to the classifiers men-
tioned in the last row (RNN: Recurrent Neural Network, SVM:
Support Vector Machines). Frame step and window size in ms.

LLD SSF

lin mel voc map cmp map cmp

dim 64 64 17 24 65 88 6373
frame 20 20 10 10 10 - -

win 40 40 25 60 60 - -
︸ ︷︷ ︸ ︸ ︷︷ ︸

RNN SVM

showed a significantly better performance in comparison to the
manually engineered features.

In the work at hand, we follow a similar approach, but
within a discrete recognition task. Also, to gain a deeper un-
derstanding under which conditions either approach performs
better, we compare results from two different datasets and test
a wider range of frame- and chunk-based features.

3. Methodology
3.1. Datasets

We run our study on the Atypical Affect and Crying sub-
challenge [7]. The two databases are well qualified for our study
as they differ greatly in terms of size and content. Atypical con-
tains 9:10 h (6 h for training) speech from disabled individu-
als split into more than 10k files labeled as one of four basic
emotional classes (anger, fear, happiness, sadness). Crying, on
the other hand, contains 2:50 h (1:30 h for training) of vocal-
isations from infants and roughly half as many chunks classi-
fied into three categories (neutral/positive, fussing, and crying).
Segment length varies greatly in both datasets and ranges from
less than a second up to a minute. For details please refer to [7].

3.2. Inputs

The study at hand approaches the question if hand-crafted fea-
tures are still relevant for paralinguistic tasks. To answer this,
we use different data representations in our experiments. On the
one hand, we learn directly from raw audio waveforms (raw).
On the other hand, we investigate hand-crafted feature sets of
varying complexity on frame- and turn-level. In the simplest
form we apply a basic spectral decomposition3 (spectrogram)
by mapping the short-term power spectrum on a linear (lin) or
a Mel scale (mel). More complex are those sets that take Low-
level Descriptors (LLDs) like loudness or pitch into account.
Here we consider the (still relatively simple) Vocalization set
(voc), which was used in the Social Signals sub-challenge in
2013 [4], as well as, the advanced, yet minimalistic eGeMAPS
set (map) [11] and the large ComParE set (cmp) [7]4. Finally,
we also apply the latter two on turn-level to extract Supra-
segmental Features (SSFs). Table 1 gives a summary of the
feature sets. Note the range of input dimensions from less than
100 to more than 6k.

3We use the ’scipy.signal.spectrogram’ routine [v1.0.0] and clip am-
plitudes below −75 dB.

4We compute the three sets with OpenSMILE [10] using the pro-
vided standard scripts, but in case of LLDs exclude deltas, as we count
on the ability of recurrent neural networks to model the temporal de-
pendencies.
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Conv1 Pool1 Conv2 Pool2 Conv3 Pool3
Input shape 160000 x 1 80000 x 16 20000 x 16 10000 x 32 2500 x 32 1250 x 64

Filter number 16 16 32 32 64 64
Filter size 64 4 32 4 16 4

Stride 2 4 2 4 2 4

160000 x 1 312 x 64 (*)
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(*) The exact numbers depend on the feature set 
and the number of target classes

Figure 2: DL system: Audio files are cut or zero-padded to have an equal length of 10 seconds. The network takes as input pre-extracted
features (1) or raw waveforms. The latter are processed by a three-layer convolution network (2). The result of either operation is then
passed through two Gated Recurrent Units (GRU) layers followed by a full-connected layer (3). The output layer has a size equal to
the number of classes.

Table 2: Results on the development set for supra-segmental
features. C: Complexity parameter of SVM.

Crying Atypical

C map cmp map cmp

10−6 0.679 0.707 0.434 0.336
10−5 0.679 0.752 0.434 0.377
10−4 0.729 0.750 0.419 0.281
10−3 0.762 0.710 0.421 0.285
10−2 0.744 0.732 0.444 0.308

3.3. Architecture

Due to the different granularities, we use two classifiers: one
that accepts raw audio input or a sequence of LLDs, and one to
work with SSFs. For the latter, we stick to the procedure sug-
gested by the challenge organizers. That is, we train a Support
Vector Machine (SVM) classifier with WEKA [26] (see [7]).

For all other tests and to have a fair comparison, we ap-
ply the same two-layer recurrent neural network (RNN) archi-
tecture to learn the temporal structure of the input sequences.
For a unified input length, we cut files to an equal length of 10
seconds5. The setup is similar to the end-to-end baseline sys-
tem [7], however, we reduce the number of GRUs to 32 while
at the same time we increase the batch-size to 32 (we found that
this had a positive effect in terms of stability and performance
in our experiments). In case of raw audio, we extend the RNN
with three convolutional layers (CRNN). Here, we rely on the
configuration proposed by SoundNet [18], i.e. each convolu-
tional layer is followed by batch normalization, rectified linear
activation units, and max-pooling.

To train the network we use Adam optimization [27] with
a learning rate of 0.001 and a momentum term of 0.9. As loss
function we rely on weighted cross entropy. Finally, we scale all
inputs to the interval [−1..1] (limits determined on the training
data). The described architecture is implemented in Tensorflow
[v1.4]. See Figure 2 for an illustration.

4. Results
In the following, we present results measured in terms of Un-
weighted Average Recall (UAR). On the Crying dataset, instead
of a LOSO validation, we hold out three subjects as a validation
partition. In case of Atypical, we stick to the splitting suggested
by the organizers. To compensate for underrepresented classes,
we apply upsampling in all cases.

Table 2 lists results for the supra-segmental feature sets. We
see that map outperforms cmp on both corpora, but particularly

5Shorter files are zero-padded from the front.
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Figure 3: Magnitude responses of the filters of the first convolu-
tional layer after training on the Crying corpus: when randomly
initialized (left), when pre-training was applied (right). Filters
are sorted by peak response.

on Atypical (by almost 7 %).
Table 3 lists results of the DL approach with respect to the

number of training epochs. Training is stopped after 20 epochs.
Since it takes a couple of epochs until a stable prediction is
reached, we omit values for the first six epochs. Taking the
average across a whole epoch we observe a maximum at 15
epochs (last column). To compare results of individual inputs at
a glance, averaged values across all epochs are given, too (last
row). Here, we can see that on the Crying corpus lin achieves
the highest mean score (0.793), followed by cmp (0.787). Other
hand-crafted features, as well as, raw audio perform signifi-
cantly worse. The best individual accuracy is achieved with
cmp (0.818). Interestingly, we have a quite different picture
on Atypical. Here, raw audio clearly surpasses the other inputs
in average (0.461) and also yields the best individual accuracy
(0.478). Among the LLDs, again lin gives the best mean per-
formance (0.415).

5. Discussion
To begin with, there is no clear winner among the examined
inputs. A hand-crafted feature set (cmp) wins on Crying, while
learned features from raw audio wins on Atypical. Interestingly,
both winners perform rather poorly on the other corpus. Com-
paring the performance of hand-crafted features, we can say that
more complexity does not necessarily lead to better results. On
both corpora the simple spectral representation (lin and mel)
show an equally good or better performance compared to the
advanced sets. There is one exception, though: on Atypical the
supra-segmental map set outranks other feature sets by at least
3 %. We explain this with the fact that GeMAPS was especially
designed for affective speech tasks [11].

Of course, we would like to know, why the learned fea-
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Table 3: Results on the development set for end-to-end and low-level descriptors with respect to the number of training epochs.

Crying Atypical

Epoch raw raw* lin mel voc map cmp raw lin mel voc map cmp Mean

7 0.714 0.749 0.803 0.765 0.691 0.699 0.755 0.455 0.371 0.432 0.315 0.418 0.373 0.580
8 0.718 0.755 0.798 0.773 0.718 0.690 0.804 0.456 0.390 0.390 0.314 0.393 0.365 0.582
9 0.713 0.749 0.806 0.765 0.715 0.705 0.769 0.459 0.405 0.433 0.335 0.386 0.367 0.585
10 0.737 0.762 0.798 0.778 0.694 0.729 0.780 0.451 0.419 0.406 0.337 0.392 0.366 0.588
11 0.727 0.762 0.803 0.783 0.708 0.738 0.788 0.442 0.416 0.400 0.331 0.400 0.352 0.588
12 0.721 0.780 0.799 0.782 0.718 0.739 0.758 0.464 0.426 0.409 0.348 0.388 0.354 0.591
13 0.728 0.767 0.790 0.785 0.728 0.733 0.806 0.473 0.419 0.400 0.353 0.394 0.376 0.596
14 0.719 0.796 0.794 0.781 0.692 0.732 0.805 0.472 0.430 0.395 0.363 0.395 0.360 0.595
15 0.745 0.764 0.798 0.781 0.741 0.741 0.791 0.459 0.418 0.399 0.354 0.400 0.380 0.598
16 0.737 0.780 0.780 0.785 0.725 0.736 0.791 0.456 0.415 0.396 0.356 0.417 0.368 0.596
17 0.700 0.790 0.786 0.784 0.719 0.753 0.791 0.468 0.428 0.398 0.351 0.404 0.362 0.595
18 0.752 0.783 0.785 0.789 0.718 0.723 0.818 0.467 0.421 0.377 0.347 0.406 0.369 0.597
19 0.714 0.805 0.779 0.790 0.707 0.746 0.773 0.453 0.428 0.369 0.352 0.392 0.378 0.591
20 0.715 0.710 0.779 0.771 0.725 0.721 0.791 0.478 0.421 0.378 0.331 0.417 0.358 0.584

Mean 0.724 0.768 0.793 0.779 0.714 0.728 0.787 0.461 0.415 0.399 0.342 0.400 0.366

Table 4: Summary and results on test set (baseline results for
Crying with LOSO).

Crying Atypical

Devel Test Devel Test

Own Approaches

raw*|raw RAW 0.752 0.678 0.478 0.420
lin LLD 0.806 0.675 0.430 0.365

cmp|map LLD 0.818 0.708 0.418 0.388
map SSF 0.762 0.729 0.444 0.411

Baseline Approaches

End2You RAW - 0.635 0.418 0.280
AuDeep LLD 0.744 0.711 0.404 0.356

OpenXBOW SSF 0.769 0.732 0.405 0.413
OpenSMILE SSF 0.756 0.719 0.378 0.431

Fusion - - 0.746 - 0.434

tures work well on Atypical, but fail on Crying. Since the lat-
ter corpus is about four times smaller, a plausible explanation
is that there is not enough data to properly train the convolu-
tional layers. Especially, if the network fails to response to high
frequencies this could be problematic since crying sounds are
often high-pitched. If this is the case, we should be able to
improve the model by finding better filter weights. Hoshen et
al. [28] showed that convolution layers can be manually con-
figured to compute a Mel scale and after training their network
with 400 hours of speech, it had even learned a similar represen-
tation when the filters were randomly initialized. To quicken the
learning process, we decided to apply an approach suggested by
Tax and colleagues [29]: we force the CNN layers to learn the
output of a spectrogram transformation. To avoid over-fitting,
we downloaded 6 hours of baby and infant cry from AudioSet6.
After pre-training the CNN layers with the data, we keep the
weights and continue with the normal training procedure on our
target corpus. The plots in Figure 3 show that this improves the
sensitivity of the network to higher frequencies. As suspected,
this also leads to better recognition rates. The new results are
listed in Table 3 under raw*.

Finally, we would like to discuss performance on the chal-
lenge test set7, which is always a good indicator for the gen-
eralizability of the individual approaches. It also allows us to
incorporate the results of the baseline systems into our conclu-
sions. Looking at Table 4 we can see that OpenXBOW and

6https://research.google.com/audioset/
7To predict labels on the test set we train our network for 15 epochs

on the full set (training and development).

OpenSMILE are the only systems, whose performances do not
drop on the test set. This may suggest that supra-segmental fea-
tures can better generalize to unseen data. Also notable is that
our end-to-end system significantly outperforms End2You (es-
pecially on Atypical) even though the networks share a similar
architecture. This may be for two reasons: we have reduced the
number of units in the RNN layers and exchanged the frontal
part of the network with the architecture proposed by Sound-
Net. The actual winner of the challenge, however, is the fusion
system, which seems to profit from the synergy of hand-crafted
features and learned representations.

6. Conclusion
In this paper, we have approached the question if – now that
end-to-end learning is becoming more and more popular – there
is still a place for hand-crafted features in paralinguistic com-
putation. We believe a discussion on this topic is of great im-
portance as it may directly influence the direction we want to
shift our preferences in the future. To this end, we have inves-
tigated feature sets of varying complexity on frame- and chunk
level and compared the results with an end-to-end system that
learns the data representation directly from the raw waveforms.
Experiments have been conducted on two corpora containing
emotional speech and infant crying.

Our results show that there is no clear winner amongst the
tested inputs. Perhaps, learning from spectrograms provides a
reasonable middle way. In fact, with respect to the hand-crafted
feature sets we found that more complexity did not necessarily
yield better results. On the other hand, supra-segmental fea-
tures generalized better to the test sets. While learning from
raw audio outperformed hand-crafted features on the emotional
corpus, it performed worse on the smaller crying database.
However, the difference disappeared when the layers were pre-
trained on spectrograms we had extracted from another dataset.
This shows that feature engineering can still help improve the
robustness of end-to-end systems. In the future, we plan to in-
crease the amount of training data in an effective and unsuper-
vised fashion by using generative adversarial networks [30, 31].

The diverse results suggest that we are not yet at a stage
where we could afford to cast away hand-crafted features. Es-
pecially, in tasks with sparse data it may still be safer to rely
on conventional feature sets. Given the rapid progress of deep
learning, however, we can expect to see advances in automatic
feature learning. Hence, on the long run the classic feature en-
gineer will probably become more of a network architect.
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