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Abstract
Recent advances in neural network (NN)-based speech en-

hancement schemes are shown to outperform most conventional
techniques. However, the performance of such systems in ad-
verse listening conditions such as negative signal-to-noise ratios
and unseen noises is still far from that of humans. Motivated by
the remarkable performance of humans under these challeng-
ing conditions, this paper investigates whether biophysically-
inspired features can mitigate the poor generalization capabili-
ties of NN-based speech enhancement systems. We make use of
features derived from several human auditory periphery mod-
els for training a speech enhancement system that employs
long short-term memory (LSTM), and evaluate them on a va-
riety of mismatched testing conditions. The results reveal that
biophysically-inspired auditory models such as nonlinear trans-
mission line models improve the generalizability of LSTM-
based noise suppression systems in terms of various objective
quality measures, suggesting that such features lead to robust
speech representations that are less sensitive to the noise type.
Index Terms: speech enhancement, neural networks, auditory
models, long short-term memory

1. Introduction
Speech signals captured from realistic acoustic scenarios are
typically very complex with added degradations such as back-
ground noise and reverberation. The goal of speech enhance-
ment systems is to improve the intelligibility and quality of
such degraded speech signals. Since the performance of sev-
eral applications such as automatic speech recognition, mobile
communication and hearing aids depends on the quality of the
captured audio signal, speech enhancement has been an actively
researched topic and several methods have been proposed over
the past several decades [1, 2].

Recent advances in deep neural network (DNN)-based
learning architectures are shown to outperform most of the con-
ventional speech enhancement approaches [3–7], thanks to their
nonlinear structure with multiple hidden layers which enables
them to model the complex degradations in the captured speech
signal. However, most DNN-based speech enhancement stud-
ies limit the evaluation to matched testing conditions where the
noise types and level (signal-to-noise ratio, SNR) of the test
data are similar to that of the training data. Since DNN ap-
proaches are data-driven, it is indeed expected that they will
outperform the conventional signal processing-based methods
in matched noise conditions when enough training data is avail-
able [8]. Therefore, a thorough analysis on the generalizability
of DNN-based speech enhancement to mismatched test condi-
tions needs to be done.

While there exist techniques such as dropout [9] and weight
regularization [10] to reduce overfitting to the training data,
such approaches have limited applicability when the input fea-

tures are heavily corrupted from different noise conditions.
There exist a few studies that have attempted to improve the
generalizability of DNN-based systems in mismatched noise
conditions. In one approach [4], a DNN is trained using a large
variety of noise types and they show that significant improve-
ments can be achieved in mismatched test conditions. How-
ever, this approach still requires a lot of training noise examples
and some of the test conditions were similar to those present
in the training set (e.g., the car and exhibition noise conditions
in the test data would be similar to a few training noise condi-
tions such as Traffic and Car Noise, and Crowd Noise.). This
work concentrates on investigating the generalizability of DNN-
based systems when only a few noise conditions are available
during training.

Although several core concepts of DNNs stem from the
cortical processing in the human brain [11], most DNN-based
speech enhancement systems still make use of conventional rep-
resentations of the acoustic speech signal such as short-time
Fourier transform (STFT) or Mel-integrated magnitude STFT
(dubbed FBANK features) [4, 6–8, 12]. Since humans perceive
speech remarkably well under a large variety of adverse listen-
ing conditions [13], we argue that biophysically inspired repre-
sentations of speech might lead to a more generalizable DNN
system. The idea of using auditory inspired features for DNN-
based applications itself is not new. It has been previously
shown that auditory inspired features such as modulation spec-
trogram [14] and Gabor filter-bank [15] features improve the
performance of speech recognition systems employing fully-
connected DNNs.

This paper further develops this work by combining the lat-
est advances in human auditory modeling with state-of-the-art
DNN-based speech enhancement systems. For this, we make
use of biophysically inspired models of the human cochlea
such as nonlinear transmission line models [16] and with re-
current neural networks (RNNs) for speech enhancement. In
a previous study, we showed that biophysically-inspired fea-
tures improve the generalizability of fully-connected NN-based
speech enhancement systems [17] with a small training dataset
(≈ 1hr). Here, we extend this approach by using RNNs which
employ long short-term memory (LSTM-RNNs) cells intending
to leverage upon its memory structure that can capture temporal
contexts with a larger training data.

This work investigates several LSTM-RNN-based speech
enhancement systems that are trained using different cochlear
models and we systematically evaluate and compare them un-
der a variety of mismatched test conditions with differing noise
types and SNR levels. The main contributions of this work are:
1) combine the best of two advanced research fields, viz. audi-
tory models and deep learning, and 2) investigate whether such
a combination yields better generalizable systems, even in con-
junction with complex LSTM-based models.
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Figure 1: Block diagram overview of the investigated neural network-based speech enhancement system.

2. Speech enhancement using LSTM-RNNs
The goal of a single-channel speech enhancement system is to
recover the underlying clean speech signal s[n] from the noisy
speech recording y[n] = s[n] + w[n], where w[n] is the added
noise. In the spectro-temporal domain, let Y(b, f), S(b, f) and
W(b, f) be the time-frequency representations of y[n], s[n]
and w[n] respectively at frequency-bin/band index b and frame
index f . We make use of the Gammatone filter-bank (comprised
of B bands) energies computed over windows to represent the
noisy speech signal in the spectro-temporal domain.

The LSTM-RNNs are trained to predict the ideal ratio-mask
(IRM) for enhancing the noisy Gammatone spectrogram as it is
shown to perform better than the ideal binary masks [18]. The
IRM is defined as:

IRM(b, f) , S(b, f)

S(b, f) + W(b, f)
. (1)

The noisy Gammatone spectrogram Y is enhanced by comput-
ing Y(b, f) · IRM(b, f) after which Gammatone synthesis [12]
is applied to reconstruct the enhanced speech signal in the time-
domain. A block diagram overview of the procedure is depicted
in Figure 1.

The features derived from various auditory models are fed
as input to the LSTM-RNN system that predicts the IRM in the
Gammatone domain. The final LSTM layer uses sigmoid acti-
vation at its output. The network weights are trained using the
back-propagation through time (BPTT) algorithm such that the
mean-square error between the predicted and the target IRMs is
minimized. In essence, this LSTM configuration operates as a
seq-to-seq system that generates IRM sequences corresponding
to the input feature sequence.

2.1. Auditory inspired features

The input features for the LSTM-RNN-based speech enhance-
ment system are derived from various auditory models using a
two-step approach. First, the audio signal is segregated into Bc

cochlear channels using the auditory models. The output of this
stage is an activity pattern along the cochlea in response to the
input audio signal. This representation will be of size Bc × L,
where L is the length of the time domain signal. In the second
step, the temporal dimension of the activity pattern is reduced
by computing the energy over the same window-length as used
for the Gammatone energies, since the output targets are Gam-
matone IRMs. This results in input features and targets with
the same temporal dimension F . Thus, the input features are
of size Bc × F and the target IRMs for enhancing Gammatone
energies are of size B × F .

The various auditory models investigated in this study are:
1. Gammatone filter-bank (GT): This filter-bank consists of a
set of parallel filters that approximate the shape, sharpness and
bandwidth of human auditory filters [19]. Auditory filtering is
attributed to the mechanics of the cochlea that result in a set of

bandpass filters with decreasing center frequency and increas-
ing sharpness as sound travels from the cochlear base (close
to the middle ear) to the apex. GT filters can easily be inverted,
which motivates their use for the enhancement phase of our pro-
cessing (Figure 1).
2. Dynamically compressed Gammachirp (DCGC): This filter-
bank incorporates realistic level-dependent changes in auditory
filter tuning, that yield wider filters for higher sound pressure
levels [20]. In a nutshell, the DCGC model consists of a set of
parallel GT filters that are followed by a level-dependent high-
pass asymmetric function that mimics the active and compres-
sive action of cochlear outer-hair-cells, which are responsible
for the level-dependent tuning in humans.
3. Cascade of asymmetric resonators with fast acting com-
pression (CARFAC): Where the previous models showed a par-
allel filter-bank architecture, CARFAC follows a serial (i.e.,
cascaded) approach in which each filter output serves as the
input to the next [21]. This architecture is more similar to
the mechanical structure of the cochlea in which sound trav-
els from the base to the apex over the longitudinally coupled
basilar-membrane. CARFAC is implemented as a cascade of
second-order filters with one complex conjugate pair of zeros
and poles. The individual filters act as second-order asymmetric
resonators, whose characteristics (i.e., best frequency and level-
dependent damping ratio) are set to match human cochlear filter
tuning.
4. Nonlinear transmission-line model (TL): This model approx-
imates the cochlear processing as a cascade of shunt admit-
tances and serial impedances that model the mechanical filter
properties and fluid coupling in the cochlea, respectively. The
model parameters are set to yield realistic human cochlear fil-
ter bandwidths that vary as a function of frequency and level
[16, 22, 23]. The cascaded over parallel organization of the
bandpass filters results in capturing cochlear phenomena related
to coupling: e.g. two-tone suppression, frequency glides, trav-
eling waves.

The various input features which are derived from these
models together with the target IRM for a noisy speech signal
(Babble noise added at 3dB SNR) are depicted in Figure 2.

3. Evaluation setup
To evaluate the speech enhancement system under different
training and mismatched testing conditions, recordings from the
TIMIT dataset (16kHz sampling frequency) were used to gen-
erate the various noisy datasets. We investigated three different
noise conditions: Babble, ICRA and Factory noises. ICRA is
a non-stationary noise designed for clinical testing of hearing
aids [24] with spectral and temporal characteristics similar to
real-life speech and babble noise. The babble and factory noise
recordings were taken from the NTT Ambient noise database.

From the 3696 utterances in the TIMIT training dataset,
recordings longer than 5s were omitted since the maximum in-
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Figure 2: The various input feature representations ((c) - (g)) together with the target IRM (b) corresponding to a noisy speech signal
(a) containing Babble noise at 3 dB SNR. The logarithm of the values are plotted for a better visualization. The horizontal and the
vertical axes correspond to the time and frequency axes, respectively.

put sequence length of the LSTM-RNN used in this study was 5
seconds. From the resulting 3 577 utterances, two training sets
were generated, each containing Babble and ICRA noises that
were added at a random SNR between 6 and 12 dB. We thus
trained 10 different LSTM-based speech enhancement systems
(2 training sets × 5 cochlear models). The test set was com-
prised of 9 noise conditions (3 noise types × 3 SNRs) in which
Babble, ICRA and Factory noises were added at−3, 3 and 9dB
SNR levels. The core test of the TIMIT database containing
192 recordings was also pruned to have a maximum length of
5 seconds and the resulting 187 utterances were used to create
the test datasets.

The Gammatone features were extracted using the imple-
mentation provided with the auditory modeling toolbox [25].
The DCGC and CARFAC representations were obtained using
the auditory image modeling toolbox (AIM-MAT) [26] and the
implementation provided in [27], respectively. The implemen-
tation for the TL model was obtained from [28]. All these mod-
els were set to use B = 64 cochlear channels and the envelope
energies were computed over a window-length of 20 ms shifted
by 10 ms, resulting in 100 feature vectors per second. The log-
arithm of the energies together with their ∆ coefficients were
used as input to the LSTM as they were found to yield better
results. The LSTMs were trained to predict the IRMs corre-
sponding to the 64 gammatone bands. The input and output
feature dimensions of the trained LSTM-RNN were thus 128
and 64, respectively.

The LSTM-RNN setting was comprised of two hidden
LSTM layers containing 512 cells each and an output LSTM
layer with 64 cells and sigmoid activation function that generate
the IRMs. As mentioned before, the maximum input sequence
length was set as 5 seconds, i.e., 500 frames. The input and out-
put features that were less than 500 frames were zero-padded to
match with the maximum sequence length. The training and test
features were mean and variance normalized using the mean and
variance of the training set. A batch-size of 16 utterances was
used to train the LSTM-RNN using the Adam optimizer with
a learning rate of 0.0001 for 200 epochs. Dropout with a keep
probability of 0.8 was also used at every LSTM layer to reduce
overfitting. A validation set containing the same noise in the
training data at 3dB SNR was used for parameter tuning. The

LSTM-RNN models were defined and trained using the Tensor-
flow toolkit [29] and GPUs were used to accelerate the training
using BPTT.

During the test phase, the IRMs generated from the trained
LSTM-RNNs were used to enhance the Gammatone energies,
and Gammatone synthesis [12] was used to reconstruct the en-
hanced time-domain speech signal. To evaluate and compare
the various speech enhancement systems, the following objec-
tive measures are used: perceptual evaluation of speech qual-
ity (PESQ) in terms of mean opinion score (MOS), segmental
SNR (segSNR) and cepstral distance (CD) in dB. Higher values
of PESQ and SRMR, and lower values of CD indicate a better
performance. For better readability, the improvements in these
measures (denoted as ∆PESQ, ∆segSNR and ∆CD) are used
for comparing the results. The ∆s for the PESQ and segSNR
were obtained by subtracting the metric obtained on the noisy
data from that of the enhanced data, whereas the ∆CD measure
is obtained by subtracting the metric obtained on the enhanced
data from that of the noisy data. In short, a higher ∆ value
implies a better performance for all the measures.

4. Results and discussion
The noise suppression performance evaluated using various
speech quality measures on different test conditions are pro-
vided in Table 1. We also include a conventional spectral
subtraction-based speech enhancement system (shown as SS)
described in [30] as an additional baseline system. It can be seen
that the SS approach performs worse when compared to the su-
pervised LSTM-based settings as the considered noise types are
non-stationary.

As expected, all models yielded a similar performance
in presence of matched noise conditions. The biophysically-
inspired nonlinear models, especially the cascaded TL and
CARFAC models, resulted in a more generalizable DNN sys-
tem as they consistently showed a better performance in mis-
matched noise conditions. The DCGC model outperformed the
GT model only in a few conditions and the improvements were
not consistent across different training and test conditions. This
could be attributed to the dynamic compression in the DCGC
that behaves differently for different noise conditions. It can
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Table 1: Comparison of noise suppression performance of the various LSTM-based speech enhancement systems trained using the
various auditory models. For all the metrics, a higher value means a better performance.

Training Data: Bab 6-12 dB Training Data: ICRA 6-12 dB

Babble ICRA Factory Babble ICRA Factory
-3dB 6dB 9dB -3dB 6dB 9dB -3dB 6dB 9dB -3dB 6dB 9dB -3dB 6dB 9dB -3dB 6dB 9dB

∆PESQ

FBANK 0.17 0.51 0.78 0.07 0.20 0.40 0.08 0.29 0.46 0.07 0.28 0.50 0.26 0.57 0.88 0.07 0.21 0.42
GT 0.17 0.51 0.78 0.05 0.19 0.33 0.08 0.27 0.44 0.07 0.29 0.50 0.26 0.57 0.86 0.06 0.22 0.39
DCGC 0.17 0.48 0.74 0.02 0.17 0.38 0.07 0.26 0.43 0.04 0.32 0.52 0.26 0.53 0.87 0.06 0.23 0.41
CARFAC 0.15 0.48 0.74 0.08 0.23 0.42 0.11 0.30 0.48 0.11 0.35 0.60 0.23 0.57 0.88 0.13 0.30 0.42
TL 0.16 0.51 0.77 0.11 0.26 0.47 0.15 0.32 0.52 0.13 0.38 0.68 0.25 0.60 0.90 0.18 0.35 0.50
SS 0.05 0.19 0.28 0.03 0.15 0.24 0.07 0.17 0.31 0.05 0.19 0.28 0.03 0.15 0.24 0.07 0.17 0.28

∆segSNR

FBANK 6.87 8.47 7.50 2.89 4.08 3.10 4.21 6.03 5.34 4.26 5.98 5.66 8.78 9.82 8.15 3.38 5.29 5.01
GT 7.07 8.55 7.49 2.06 3.10 2.51 3.95 5.63 5.21 4.42 6.22 5.81 9.24 10.38 8.45 3.12 5.14 4.85
DCGC 6.60 8.00 7.11 2.19 3.10 2.64 3.99 5.36 5.01 4.49 6.27 5.92 9.09 10.11 8.14 3.23 5.18 4.95
CARFAC 6.84 8.40 7.37 3.24 4.45 3.57 4.65 6.33 5.62 5.03 6.65 6.28 9.08 10.14 8.15 3.59 5.87 5.11
TL 6.92 8.48 7.46 3.42 4.59 3.69 4.95 6.44 5.73 5.14 6.86 6.37 9.12 10.29 8.36 3.89 6.08 5.56
SS 1.43 2.79 2.94 1.03 2.21 2.54 1.94 3.27 3.04 1.43 2.79 2.94 1.03 2.21 2.54 1.94 3.27 3.04

∆CD

FBANK 1.27 1.64 1.53 0.40 0.80 0.85 0.88 1.21 1.28 0.76 1.04 1.06 1.68 1.86 1.71 0.68 1.00 1.10
GT 1.26 1.63 1.52 0.37 0.60 0.66 0.81 1.17 1.18 0.70 1.01 1.05 1.67 1.91 1.72 0.63 0.96 0.98
DCGC 1.14 1.52 1.44 0.37 0.59 0.68 0.83 1.17 1.16 0.73 1.09 1.11 1.62 1.84 1.67 0.65 0.96 0.99
CARFAC 1.16 1.51 1.47 0.44 0.81 0.85 0.91 1.23 1.30 0.86 1.24 1.24 1.61 1.83 1.66 0.72 1.06 1.12
TL 1.21 1.59 1.50 0.50 0.89 0.92 0.98 1.30 1.35 0.91 1.31 1.28 1.64 1.87 1.68 0.80 1.15 1.21
SS 0.24 0.37 0.31 0.19 0.31 0.28 0.31 0.43 0.39 0.24 0.37 0.31 0.19 0.31 0.28 0.31 0.43 0.39

also be seen from Figure 2 that the dynamic compression seems
to distort the high frequency regions especially in presence of
noise. The FBANK features were observed to generalize well
when trained on babble noise, but this was not observed for the
ICRA noise training condition. Another interesting observa-
tion is that the FBANK features yielded good results under high
SNR conditions and that the performance dropped considerably
at lower SNRs suggesting that FBANK features are sensitive to
the mismatch in SNR levels as well.

In general, it can be seen that the cascaded models such as
CARFAC and TL lead to a better generalizable DNN system
when compared to the parallel filter-bank models. This shows
the benefits and potential of using biophysically inspired, cas-
caded filtering models of the cochlea for speech related appli-
cations. The reason why cascade filter-models perform better
than their parallel counterparts can be explained by the SNR
improvement that is obtained when considering a single filter in
the cascade. It was previously shown that the longitudinal cou-
pling of filters (even if they have the same tuning) results in a
2–5 dB SNR improvement at the filter output, for tone-in-noise
stimuli [31]. This shows that if we capture the complexity of
cochlear mechanics (yielding a natural noise-reduction) in the
features provided to the DNN, then such systems themselves
become more generalizable and robust to different testing con-
ditions. Additionally, describing the cochlear mechanics real-
istically requires more computational effort than when filtering
using a GT filterbank, which might pose a design constraint on
the desired application.

5. Conclusions
This paper investigated whether biophysically inspired features
can mitigate the poor generalization capabilities of an LSTM-
RNN-based speech enhancement system. We compared 5 dif-

ferent cochlear models ranging from traditional FBANK fea-
tures to the latest transmission line model. The evaluations
under a variety of matched and mismatched test conditions
revealed that the biophysical models such as TL and CAR-
FAC models improve the generalizability of LSTM-RNN-based
speech enhancement systems. It was also observed that simple
nonlinear models such as DCGC did not result in a better speech
enhancement setting. The promising results with TL and CAR-
FAC models also highlights the mutual benefits of combining
the latest advances in human auditory modeling and DNNs.

Investigating the robustness of such features for state-of-
the-art speech recognition systems is a suggested future work.
Since these models are also capable of modeling higher lev-
els of the human auditory pathway such as auditory nerve fibre
responses, another promising research direction would be to in-
vestigate features derived from such higher level speech repre-
sentations as well.
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