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Abstract
Speaker embeddings achieve promising results on many speak-
er verification tasks. Phonetic information, as an important
component of speech, is rarely considered in the extraction
of speaker embeddings. In this paper, we introduce phonetic
information to the speaker embedding extraction based on the
x-vector architecture. Two methods using phonetic vectors
and multi-task learning are proposed. On the Fisher dataset,
our best system outperforms the original x-vector approach by
20% in EER, and by 15%, 15% in minDCF08 and minDCF10,
respectively. Experiments conducted on NIST SRE10 further
demonstrate the effectiveness of the proposed methods.
Index Terms: speaker verification, speaker embedding, pho-
netic information, phonetic vectors, multi-task learning

1. Introduction
During the last decade, the i-vector framework has become
the dominant approach for speaker verification. By virtue of
factor analysis and backend classifiers, the i-vector framework
is able to model speaker characteristics and compensates for
channel variability [1]. The main idea behind the framework is
to represent a variable-length utterance with a fixed-length low-
dimensional vector. These vectors can also be used in other
areas such as speaker diarization [2] and speech synthesis [3].

Recently, more attention has been drawn to the use of
neural networks to extract speaker-discriminant vectors, which
are known as speaker embeddings. Early success of speaker
embedding includes the d-vector, which was initially developed
for text-dependent speaker verification [4] and has been found
to perform well in text-independent tasks [5]. To better capture
speaker characteristics, recurrent neural networks (RNNs) [6],
convolutional neural networks (CNNs) [7] and many other
neural network architectures [8, 9, 10] are used. Different loss
criteria such as cross entropy [11], triplet loss [9, 10] and end-
to-end loss [6, 7, 12] have been investigated in recent publi-
cations. Speaker embeddings have outperformed conventional
i-vectors in many conditions and are a promising new approach.

Current speaker embedding extraction only utilizes speaker
labels and does not consider other information. However,
speech signals are complex and are influenced by various
factors. Two predominant components, phonetic content and
speaker traits, are intermingled in the speech, representing
what’s said and who’s the speaker. Other components include
background noise and channel effects. This presents challenges
to both speech and speaker recognition. In automatic speech
recognition (ASR), speaker adaptation techniques are applied
to eliminate the impact of diverse speakers and are effective at
increasing accuracy [13, 14, 15]. Similarly, phonetic indepen-
dence is desirable in speaker recognition. Statistical models like

joint factor analysis (JFA) [16] and i-vector can explicitly model
the phonetic content [17, 18], while in neural models, phonetic
vectors can be used as indicators to help deep neural networks
(DNNs) find the more speaker-dependent information. In [19],
the authors used output posteriors of an ASR network as the
phonetic vectors and presented a form of speech factorization.

On the other hand, although the phonetic and speaker
factors are different, they share some common information. For
instance, the spectrum energy distribution and the trajectory
of pitch are informative for speech and speaker recognition.
Based on this fact, multi-task learning has been proposed in
both areas [20, 21, 22]. In multi-task learning, the speaker and
phonetic discriminant networks share some hidden layers, and
the networks predict speaker and phonetic labels at the same
time.

However, there are some shortcomings in the previous
phonetic vectors and multi-task learning based approaches:

1. The phonetic vector is extracted from an independently
trained ASR model, followed by the training of a speaker-
discriminant network. This two-step procedure may lead
to a sub-optimal result and the phonetic vector may be less
efficient for speaker verification.

2. The existing methods for multi-task learning only perform in
a frame-wise style, which means the speaker and phonetic
classification are applied at the frame level. But speaker
characteristics are often noisy at short-time frames, making
it difficult to train the model.

Therefore, in this paper, we propose two methods to com-
bine the speaker embedding extraction with phonetic informa-
tion. Joint training is introduced to improve the quality of
phonetic vectors. In addition, a multi-task learning method
operating at both frame and segment levels is presented. Ex-
periments on Fisher and NIST SRE10 show that the proposed
methods achieve better performance.

The organization of this paper is as follows. The speaker
embedding we use in this paper is briefly introduced in Section
2. Section 3 describes the proposed methods to combine the
phonetic information with the speaker embedding extraction.
Our experimental setup and results are given in Section 4 and 5.
The last section concludes the paper.

2. Neural network speaker embedding
In this paper, we extract the speaker embedding based on the
x-vector architecture [11]. As shown in Fig. 1, the network
can be partitioned into frame and segment levels. The input
xs

t is the feature of frame t in utterance s. After several hidden
layers, a statistics pooling component is applied to all the frame-
level activations fs

t , computes the mean and diagonal standard
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Figure 1: The x-vector architecture for the speaker embedding
extraction.

deviation, and reduces them to a segment vector ls. Fully-
connected layers followed with a softmax layer are then used
to predict the posterior of speaker k with respect to utterance s.
Given the parameters of the frame- and segment-level networks,
θf and θl, the posterior P (spkrk|s) is expressed as:

fs
t = F(xs

t ,θf ) (1)

ls = P(fs
1, . . . ,f

s
Ts
) (2)

P (spkrk|s) = F(ls,θl) (3)

where Ts is the utterance length and F(·), P(·) represent the
forward and pooling operation, respectively.

After training, the output of a hidden layer at the segment
level is extracted as the speaker embedding, termed the x-
vector. Linear discriminant analysis (LDA) and probabilistic
linear discriminant analysis (PLDA) [23] are further applied to
generate the verification scores.

3. Phonetic information in speaker
embedding extraction

In this approach, the speaker embedding is extracted from a
DNN. The phonetic information can be introduced by another
neural acoustic model in ASR. The ASR network uses the same
features but predicts the corresponding phonetic labels of the
inputs. In contrast to the x-vector network, the ASR network
works frame-by-frame. In this section, we propose two methods
to combine these networks to extract the speaker embedding.

3.1. Adapting x-vector with phonetic vectors

Similar to speaker adaption based on speaker code [14, 15],
phonetic adaptation can also be applied using phonetic vectors.
In our work, phonetic vectors are extracted from an ASR
network and connected to the x-vector network as auxiliary
inputs. For the initialization of the model, the ASR network
with parameters {θa} is first trained. The outputs of a bottle-
neck layer act as the phonetic vectors and the ASR network is
attached to the x-vector network as Fig. 2. Now, the frame-level
activation fs

t becomes:

fs
t = F(xs

t ,θf ,θa) (4)

During the x-vector training, the gradients back-propagate
through the integrated network and update {θa,θf ,θl}.
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Figure 2: The x-vector network with the auxiliary ASR network
and phonetic vectors.
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Figure 3: Multi-task learning in a hybrid fashion at frame and
segment levels.

3.2. Multi-task learning with shared layers

Information which is vital for both speech and speaker recog-
nition can be discovered by multi-task learning. Given a joint
network, multi-task learning tries to perform well on both tasks.
From a front-end processing perspective, the shared layers are
a feature extractor which learns more informative features and
suppresses nuisance noise in speech. From a view of model
training, this improves the model generalization by introducing
a regularization.

Since the speaker characteristics are noisy at the frame
time-scale and tend to reside in longer segments, we propose
a hybrid multi-task learning. In contrast to existing works, in
our method only the frame-level part of the x-vector network
is shared with the ASR network. The phonetic classification is
done at the frame level, while the speaker labels are classified
at the segment level. The architecture is shown in Fig. 3.

In this approach, the parameters are split into
{θs,θ′a,θ′f ,θl} in the new model, where θs relates to
the shared layers, and θ′a, θ′f denote the remaining part of the
ASR and x-vector networks at the frame level. The activation
fs

t changes to:
fs

t = F(xs
t ,θs,θ

′
f ) (5)

A strategy similar to the training of multilingual acoustic
models is applied [24]. There are two types of training examples
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in our model, i.e., the speaker and phonetic examples. Given
input features, the speaker examples only contain the speaker
labels while the phonetic examples contain the corresponding
phonetic units. During the training process, these examples are
merged into different mini-batches. When the speaker examples
are used, we update {θs,θ′f ,θl}. When the phonetic examples
are used, {θs,θ′a} are updated. It is possible to choose different
learning rates for these tasks, but for simplicity we keep them
the same in the experiments.

This training strategy is flexible. By introducing other data
designed for ASR, the multi-task learning can be used even if
the original dataset does not have any phonetic transcriptions.

4. Experimental setup
4.1. Dataset

To investigate the performance of the speaker embedding ex-
traction with phonetic information, we have run experiments
on two datasets: Fisher [25] and NIST SRE10 [26]. Fisher is
speaker and ASR transcribed, which provides an ideal condition
to assess our methods. On NIST SRE10, however, only speaker
labels are available. To employ phonetic information in this
case, we need to introduce an out-of-domain ASR dataset. The
details of the two datasets are given as follows.

• Fisher is manually partitioned into training and evaluation
subsets. We randomly select 95167 segments (sampled from
13390 utterances) as the training set. There are 5000 speakers
in the 172h training set. The duration of each segment ranges
from 3s to 15s. The evaluation set contains 1000 speakers
which do not overlap with the training set. The enrollment
for each speaker consists of 10 segments (about 30 seconds
in total). The test data contains 3000 segments (3 segments
per person and 3 seconds per segment), forming 3M target
and non-target trials.

• NIST SRE10 core-extended and 10s-10s condition 5 are
used in our experiments. NIST SRE 2004-2008 telephone
excerpts, Switchboard Phase II Part 1/2/3 and Cellular Part
1/2 are used as the training set. This represents 5524 hours
of data and comprises 6374 speakers, 64742 utterances. To
introduce phonetic information, the 318-hour out-of-domain
Switchboard-I is used.

For both datasets, the validation set consists of 1000 segments
randomly selected from the training set.

All models in our experiments are gender-independent, and
the results are reported on the male and female pooled trials.
Since we do not have enough space to illustrate the detection
error tradeoff (DET) plots, equal error rate (EER), minimum
detection cost function from NIST SRE08 (minDCF08) [27]
and SRE10 (minDCF10) [26] are presented to investigate the
performance across different operation points.

4.2. Baseline i-vector system

A standard i-vector system is used as a comparison to the x-
vector and our proposed methods. The feature is 20-dimension
static MFCCs with delta and delta-delta. Cepstral mean normal-
ization (CMN) and energy-based voice active detection (VAD)
are applied. We use the same features in all experiments.

The 2048-mixture universal background model (UBM)
and the 600-dimension i-vector extractor are trained using the
training data. LDA is applied to reduce the dimension of i-
vector to 200 prior to PLDA scoring.

4.3. X-vector architecture

The frame-level part of the x-vector network is a 5-layer time-
delay neural network (TDNN) [28]. The input of each layer is
the sliced output of the previous layer. The slicing parameter is:
{t− 2, t− 1, t, t+1, t+2}, {t− 2, t, t+2}, {t− 3, t, t+3},
{t}, {t}. It has 512 nodes in layer 1 to 4, and the 5-th layer has
1500 nodes. The segment-level part is a 2-layer fully-connected
network with 512 nodes per layer. The output is predicted by
softmax and the size is the same as the number of speakers. 150-
dimensionl LDA and PLDA scoring are trained and applied.
Refer to [11] for more details.

4.4. X-vector extraction with phonetic information

In our experiments, we use senones as the phonetic units to
train the ASR networks. The number of senones is 2366 for
Fisher, and 3854 for Switchboard-I. The senone transcriptions
is generated by GMM-HMM forced alignment.

For adaptation based on phonetic vectors, a 5-layer TDNN
ASR network is first trained until convergence. The last layer is
a bottleneck layer with 128 nodes, and other layers consists of
512 nodes. The output of the bottleneck layer is connected to
the 5-th layer of the x-vector network. The combined network
is then jointly optimized. The learning rate scale factor to fine-
tune the ASR network is 0.2.

In multi-task learning, the ASR network has the same
architecture with the x-vector network but without the statistics
pooling component, since they share common layers. The
batch sizes for speaker and phonetic examples are 64 and 256,
respectively.

Our systems are implemented with Kaldi toolkit [29] and
will be open-sourced 1.

5. Results
5.1. Fisher

Table 1: Results on Fisher dataset. PV denotes the speaker
embedding with phonetic vectors and MT-n is the multi-task
learning sharing n layers.

Systems EER(%) minDCF08 minDCF10
i-vector 2.10 0.0093 0.3347
x-vector 1.73 0.0086 0.3627

PV (no fine-tuning) 1.63 0.0089 0.3607
PV (fine-tuning) 1.60 0.0076 0.3413

MT-1 1.73 0.0082 0.3487
MT-2 1.53 0.0078 0.3170
MT-3 1.57 0.0072 0.3080
MT-4 1.39 0.0073 0.3087
MT-5 1.50 0.0076 0.3323

The results of i-vector and x-vector are first compared
on Fisher dataset. From Table 1, it can be seen that x-
vector outperforms i-vector in EER and minDCF08, while i-
vector is better in minDCF10. The performance of speaker
embeddings with phonetic vectors is shown in the second part
of Table 1. Using phonetic vectors extracted from the ASR
network without fine-tuning, the speaker embedding performs
slightly better than x-vector. With the network fine-tuning, the
performance is further improved.

1yiliu.org.cn
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Figure 4: Speaker classification accuracy on Fisher validation
set vs epochs trained.

Next, the proposed hybrid multi-task learning methods
are evaluated. The results of sharing different layers are
illustrated in the third part of Table 1. When the number of
shared layers increases, the performance first improves and then
slightly degrades. Sharing 4 frame-level layers achieves the best
result in our experiments. This gives a 20%, 15% and 15%
improvement over the original x-vector in EER, minDCF08 and
minDCF10, respectively.

As stated before, the ASR network in the multi-task learn-
ing can be seen as a regularization. Fig. 4 shows the speaker
classification accuracy on the validation set using different
settings. From this figure, we find that sharing 4 layers achieves
the highest validation accuracy, while the unmodified x-vector
performs the worst. The models trained by multi-task learning
generalize better to unseen data. This is consistent with the
results of speaker verification in Table 1.

5.2. NIST SRE10

The speaker and ASR data are perfectly matched on the Fisher
set. This is not the case for NIST SRE10. We have to involve
the out-of-domain Switchboard-I to provide the phonetic infor-
mation for the speaker embedding extraction.

Table 2: Results on NIST SRE10 core-extended condition 5. PV
denotes the speaker embedding with phonetic vectors and MT-n
is the multi-task learning sharing n layers.

Systems EER(%) minDCF08 minDCF10
i-vector 2.19 0.0120 0.4373
x-vector 2.23 0.0124 0.4593

PV (no fine-tuning) 1.84 0.0101 0.4245
PV (fine-tuning) 1.61 0.0093 0.3643

MT-1 1.78 0.0103 0.3861
MT-2 1.76 0.0101 0.3717
MT-3 1.59 0.0102 0.3700
MT-4 1.90 0.0101 0.3652

Table 2 presents the results of different methods on the
NIST SRE10 core-extended condition 5. When the utterance
duration is long enough, i-vector achieves a good performance
and outperforms x-vector across all the three operation points.
Using phonetic vectors, the speaker embedding again performs
better than i-vector. We note that the phonetic vector with fine-
tuning outperforms the one without fine-tuning by 13%, 8%

Table 3: Results on NIST SRE10 10s-10s condition 5. PV
denotes the speaker embedding with phonetic vectors and MT-n
is the multi-task learning sharing n layers.

Systems EER(%) minDCF08 minDCF10
i-vector 10.46 0.0533 0.9817
x-vector 9.15 0.0479 0.9093

PV (no fine-tuning) 9.01 0.0453 0.9093
PV (fine-tuning) 8.45 0.0424 0.8828

MT-1 9.14 0.0446 0.8809
MT-2 8.05 0.0430 0.9130
MT-3 8.81 0.0468 0.8342
MT-4 10.07 0.0505 0.9103

and 14% in EER, minDCF08 and minDCF10. The multi-task
learning approach is also effective. With 3 layers shared, multi-
task learning improves the performance of x-vector by 29% in
EER, 18% in minDCF08 and 19% in minDCF10.

As shown in Table 3, the speaker embeddings with phonetic
vectors and multi-task learning also achieve better results than
i-vector and x-vector on the NIST SRE10 10s-10s condition
5. The improvements are relatively smaller than the previous
conditions. Using phonetic vectors with fine-tuning performs
the best in minDCF08 while the multi-task learning sharing
different layers is optimal for EER and minDCF10.

On the NIST SRE10 dataset, the optimal number of shared
layers in multi-task learning is generally less than that for
Fisher. The reason is that NIST SRE10 has more than 5000
hours of data to train the x-vector network. It is thus easier
to learn the speaker characteristics from the source and is less
likely to overfit. Moreover, the phonetic information comes
from the out-of-domain ∼300h Switchboard-I dataset, limiting
its contribution to the training. Even under this condition, the
speaker embedding still benefits from the phonetic information.

6. Conclusions
In this paper, we add phonetic information to the speaker
embedding extraction based on phonetic vectors and multi-
task learning. The phonetic vector is jointly optimized with
the x-vector network and provides auxiliary information to
adapt the speaker embedding. A novel multi-task learning,
working at both frame and segment levels, is then proposed.
The shared layers extract informative features, making the
network more robust and less likely to overfit. The speaker
embeddings extracted with phonetic vectors and multi-task
learning substantially outperform the baseline i-vector and x-
vector on the Fisher dataset. On NIST SRE10, using the
mismatched Switchboard-I data, speaker embedding still shows
benefits from adding the phonetic information. By carefully
designing the network architecture, the proposed methods can
be applied to other end-to-end speaker verification systems.

In the future, we will improve the method when only out-
of-domain ASR data is available, and develop an architecture to
combine the phonetic vector approach with multi-task learning.
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