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Abstract
Speech recognition of foreign accented (non-native or L2)
speech remains a challenge to the state-of-the-art. The most
common approach to address this scenario involves the col-
lection and transcription of accented speech, and incorporat-
ing this into the training data. However, the amount of ac-
cented data is dwarfed by the amount of material from native
(L1) speakers, limiting the impact of the additional material.
In this work, we address this problem via data augmentation.
We create modified copies of two accents, Latin American and
Asian accented English speech with voice transformation (mod-
ifying glottal source and vocal tract parameters), noise addi-
tion, and speed modification. We investigate both supervised
(where transcription of the accented data is available) and un-
supervised approaches to using the accented data and associ-
ated augmentations. We find that all augmentations provide im-
provements, with the largest gains coming from speed modifi-
cation, then voice transformation and noise addition providing
the least improvement. The improvements from training accent
specific models with the augmented data are substantial. Im-
provements from supervised and unsupervised adaptation (or
training with soft labels) with the augmented data are relatively
minor. Overall, we find speed modification to be a remarkably
reliable data augmentation technique for improving recognition
of foreign accented speech. Our strategies with associated aug-
mentations provide Word Error Rate (WER) reductions of up
to 30% relative over a baseline trained with only the accented
data.
Index Terms: speech recognition, data augmentation, voice
transformation, foreign accented speech

1. Introduction
The state of the art in automatic speech recognition (ASR) per-
formance continues to improve, in some cases approaching hu-
man levels of performance. However, the recognition of foreign
accented speech is still a challenge, with performance signifi-
cantly lagging. For a global language like English, estimates
suggest that non-native speakers may outnumber native speak-
ers by as much as 3 to 1 [1]. This is a well-known problem, and
there are a variety of ways that have been explored to address
it (cf. Section 2). Most of these approaches involve collecting
some amount of accented speech and using it for training either
instead of or alongside the available native speaker data.
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Despite the large population of non-native speakers of En-
glish, there is much more high quality speech data from native
speakers than non-native speakers available in the form of pub-
licly available and even most privately held data sets. Moreover,
non-native speech is a brief descriptor of an incredibly heteroge-
neous set. A particular speaker’s specific native language, and
their experience and proficiency in speaking English all have
significant impacts on the realization of their speech. Novice
learners of English speak differently than fluent speakers; Na-
tive Japanese speakers speak English differently than Native
Spanish speakers do. These are dimensions of variation that
are unique to foreign accented data, and operate in addition to
the variation that impacts recognition of native English speech,
like speaker differences and recording conditions. This vari-
ation compounds the problem of available data – not only is
there less foreign accented data available, but it is more varied
than the corresponding native data.

A common approach to address this limitation is data aug-
mentation (Section 3), wherein artificial copies of the available
audio data are generated using a label-preserving transforma-
tion. The model topology, training and adaptation methods used
for this work are presented in Section 4. The main contributions
of this work are:

• A novel, voice transformation technique based on acous-
tic source- and vocal-tract transformations as a data aug-
mentation scheme.

• Impact of three approaches to data augmentation: voice
transformation, noise addition and speed modification in
supervised settings when training models anew and via
adaptation (Section 5.2).

• Impact of using foreign accented data for unsupervised
adaptation and the value of the aforesaid data augmenta-
tion methods in this context (Section 5.3).

Unsurprisingly, we find that in both the supervised and un-
supervised contexts, voice transformation and speed modifica-
tion based data augmentation helps with the recognition of for-
eign accented speech. More surprisingly, despite being the sim-
plest transformation approach, we find that speed modification
is a remarkably robust data augmentation approach, yielding
larger gains than voice transformation or noise addition when
dealing with recognition of accented speech.

2. Related Work
Data augmentation is a commonly employed technique to in-
crease the diversity of training data by artificially creating addi-
tional training samples. Increasing the amount of training data
using various signal or data processing techniques has shown
to be consistently beneficial by preventing models from over
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fitting and improving the overall robustness of ASR models. In
[2] data augmentation by creating multiple versions of the origi-
nal signal with various speed factors has been shown to improve
ASR performance across various tasks. This approach is used
more elaborately in [3] where in addition to data augmentation
at the signal level with noise addition and speed perturbation,
data is augmented in a second stage, at the feature level with a
fMLLR-based technique applied to bottleneck features. Simi-
larly in [4], data augmentation is performed at the feature level
via vocal tract length perturbation (VTLP) and stochastic fea-
ture mapping (SFM), to improve ASR performance in low re-
source settings. Data augmentation has also been investigated
via semi-supervised training, speech synthesis and multi-lingual
processing [5]. In most ASR settings since noise robustness is
desired, data augmentation by corrupting clean train data with
various additive and convolutive noises has also been exten-
sively studied [6].

In this work, we investigate the usefulness of several of
these data augmentation techniques at the audio signal level for
recognition of accented speech. We introduce a novel, acoustic
source- and vocal-tract transformations as the basis of a data-
augmentation technique. This technique was originally pro-
posed for a prosody-labeling task [7]. Its use to enhance acous-
tic modeling for speech recognition and speed modification fo-
cusing on accented speech is, to the best of our knowledge, a
novel contribution of this paper.

3. Data Augmentation Strategies
In this section we describe three approaches to data augmenta-
tion: Voice Transformation (Section 3.1), Noise Addition (Sec-
tion 3.2) and Speed Modification (Section 3.3).

3.1. Voice Transformation

In this work we explore the application of a voice-
transformation technique capable of manipulating the vocal-
source and vocal-tract characteristics to alter the speaker’s voice
quality and/or impart novel speaker identities. Since the modi-
fications preserve the phonetic content of utterances, they may
be paired with the original transcripts to create additional train-
ing data in a supervised-learning approach (Section 5.2). In this
section we offer a brief overview of the analysis and resynthesis
technique; a more detailed exposition can be found in [8].

Analysis: A pitch contour is first extracted from the au-
dio signal at a 5ms-update rate, and the signal analyzed at the
same frame rate. The analysis is limited to voiced regions
(all unvoiced frames are skipped), with a short-time window
of 3.5 pitch cycles. The Iterative Adaptive Inverse Filtering al-
gorithm [9] is employed to obtain a raw glottal source deriva-
tive waveform, and this one fitted with the Liljencrants-Fant
(LF) parametrization [10] represented by a 3-parameter vector
θ = [Tp, Te, Ta]T (normalized by the pitch period), the aspi-
ration noise level, and the gain factor. The vocal tract is rep-
resented by 40 Line Spectral Frequencies (LSF). The temporal
trajectories of all parameters are smoothed with a 7-frames long
moving averaging window to reduce estimation artifacts.

Resynthesis: To reconstruct the audio signal from its pa-
rameters, consecutive voiced frames are stacked together to
form contiguous voiced regions, and then interleaved with un-
voiced regions, which are kept in the raw form and never mod-
ified. To synthesize a consecutive voiced region, a sequence of
pitch-cycle onsets is generated according to a desired synthesis
F0 contour (original or transformed).

The glottal-source and vocal-tract parameters associated

with each pitch cycle are generated by interpolating between
the corresponding parameters associated with the cycle’s sur-
rounding (edge) frames. The sequence of glottal pulses thus
generated is then multiplied by the corresponding gain factors.
Additive aspiration noise is constructed for the entire voiced re-
gion by amplitude modulation of a 500-Hz high-passed Gaus-
sian noise signal. The amplitude modulation forms the noise
time-envelope shape, so that it is aligned with the glottal-pulse
energy envelope, respects the noise level and gain values within
each cycle, and evolves smoothly at the transitions between the
consecutive cycles. The LSF parameters associated with each
pitch cycle are converted into auto-regression coefficients and
used to filter the pulse sequence: the filter coefficients are up-
dated at the beginning of each pitch cycle, and each voiced re-
gion is then combined with its neighboring unvoiced regions
using an overlap-add process.

Transformation: The previous algorithm provides the ba-
sis for introducing global (time-invariant) voice modifications
that alter pitch, vocal tract and the glottal pulse. Global pitch
modifications transpose and stretch the original pitch contour by
factors fshift

0 and frange
0 respectively. The vocal tract trans-

formation takes the form of an interpolating spline function,
with user-specified inflection points, that is used to map each
cycle’s LSFs prior to reconstruction. For the glottal pulse trans-
formations two independent types of control are supported: (i)
interpolation between the actual and user-provided reference
glottal-pulse vector θref and mixing weight 0 ≤ α ≤ 1:

θ̂ = (1 − α)θ + αθref (1)

and (ii) interpolation between two stylized anchor pulses cor-
responding to voice qualities that can be described as lax and
tense:

θ̂ =

{
(1 − βlt)θ + βltθl if βlt > 0

(1 − |βlt|)θ + |βlt|θt otherwise
(2)

where −1 ≤ βlt ≤ 1 is a user-specified parameter that
trades between lax and tense qualities (and recovers the orig-
inal pulse when βlt = 0), and θl = [.5, .9, .099]T and θt =
[.1, .15, .00001]T are the fixed lax and tense glottal parameters
respectively.

3.2. Noise Addition

As described earlier, to increase the noise robustness of ASR
models, the original clean acoustic model training data is of-
ten corrupted with various additive and convolutive noises to
create a multi-condition training set. A popular data set that
demonstrates the usefulness of such multi-condition training is
the Aurora 4 corpus [11]. In this data set, six additive noise con-
ditions collected from street traffic, train stations, cars, babble,
restaurants and airports are added to the speech data in addi-
tion to capturing convolutive noise effects via various micro-
phone distortions. In a similar spirit, to understand the effect of
noise addition as a strategy for data augmentation for accented
speech, we use the FaNT (Filtering and Noise-adding Tool) tool,
to create augmented data by adding noise to speech recordings
at a desired SNR (signal-to-noise ratio) along with other desired
frequency characteristics.

3.3. Speed Modification

Following an approach introduced in Ko et al. [2] and used by
Hartmann et al. [3], we perform speed perturbation to generate
modified copies of the source audio. This approach modifies the
speed of each file by a multiplicative factor drawn at random
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uniformly between 0.9 and 1.1. This resampling, performed
using the SOX utility, impacts the duration of the file, as well as
the pitch and spectral frequencies of the contained audio.

4. Models and Training
4.1. Model Topology

All acoustic models used throughout this paper are Convolu-
tional Neural Networks (CNNs) of the same size. The CNN
is trained with 40 dimensional log Mel-frequency spectra aug-
mented with ∆ and ∆∆ as inputs. Each frame of speech is also
appended with a context of 11 frames after applying a speaker
independent global mean and variance normalization. The CNN
system uses two convolutional layers with 128 and 256 hid-
den nodes each in addition to four fully connected layers with
2048 nodes per layer to estimate posterior probabilities of 9300
context-dependent states as output targets. All of the 128 nodes
in the first feature extracting layer are attached with 9×9 filters
that are two dimensionally convolved with the input log Mel-
filterbank representations. The second feature extracting layer
with 256 nodes has a similar set of 3×4 filters that processes
the non-linear activations after max pooling from the preceding
layer. The non-linear outputs from the second feature extract-
ing layer are then passed onto the subsequent fully connected
layers. All the layers use the ReLU non-linearity.

4.2. Weight Decay Based Supervised Adaptation

The supervised adaptation algorithm used in this paper is sim-
ilar to the one proposed in [12]. This scheme resembles MAP
adaptation, with the adapted weight updates arrived at from us-
ing a weighted combination of the updates from adaptation data
and the baseline model. Unlike the work in [12] where adapta-
tion was performed at a speaker level, in this paper, the entire
adaptation data is pooled and the algorithm is used as an overall
domain adaptation scheme [13], as given by Equation (3)

∆wt = −α∇wE(wt) − β(wt−1 − w0), (3)

where α is a learning rate, β is a regularization parameter,
E(w) is an error function, and w0 is model parameters of the
initial model. The network is adapted using the cross entropy
training criterion.

4.3. Unsupervised Adaptation Based on Teacher Student
Training

A teacher student training is a framework to mimic powerful
and complicated teacher networks with compact and simple stu-
dent network (e.g. [14, 15]). Instead of using the ground truth
labels, the teacher-student training approach defines the loss
function as

L(θ) = −
∑

i

qi log pi, (4)

where qi is the soft label of the teacher model, which works as a
pseudo label. pi is output probability of the class of the student
model. In qi, the competing classes will have small but nonzero
posterior probabilities for each training example. Once we train
powerful teachers such as VGG network, we can create student
networks with lower computational complexity to approximate
their performance [16, 17, 15]. In the teacher student frame-
work, since soft labels generated from teacher networks are
used as targets to train student networks, corresponding tran-
scriptions are not always necessary. This means that teacher-
student training can be leveraged as an unsupervised acoustic
model training/adaptation [15] method. In this paper, we use

this scheme to train as well as adapt CNN student networks in
an unsupervised fashion.

5. Experiments and Results
5.1. Data

The accented data (AD) used for data augmentation is an En-
glish corpus comprising of 42.8 hours recorded from speakers
with Latin American (20.7 hours from 94 speakers) and Asian
(22.1 hours from 96 speakers) accents under clean and noisy
conditions. A total of 38 hours from this set was used for train-
ing and the remaining (5 hours) was set aside as held-out. The
test data contained 5 hours, consisting of 2.1 hours of Latin
American (LA) accented speech and 2.4 hours of Asian ac-
cented speech. The utterances in this corpus are a mix of digits
and alphabets in insolation, command phrases and short dialogs
seen in spoken language systems. For voice-transformation
based data augmentation, a total of 7 different transformations
of the AD data, empirically chosen so as to provide a good
amount of variability in terms of identity and expressiveness
were implemented to obtain initial augmentations of the data.
The augmented data was decoded with an ASR system that was
not trained using the AD data. The three voice transforma-
tions with WERs less than 50% were identified as candidates
for data augmentation and resulted in approximately 114 hours
(VT). For speed-based data augmentation, we altered the speed
of each utterance in the AD corpus by a multiplicative factor
drawn at random uniformly between 0.9 and 1.1 and created 3
copies per utterance, totaling approximately 114 hours (Speed).
For noise-based data augmentation, we use 12 noises from the
DEMAND database [18] which includes noises in restaurants,
home environments, open spaces, meeting rooms and transit
modes likes buses, cars and trains. Each of the 12 noises are
used to renoise approximately 10 hours of the clean portion of
the AD corpus to create a noisy accented corpus of approxi-
mately 120 hours (Noise). The decoder uses a vocabulary com-
prising 250K words and the language model is a 4-gram LM
with 200M n-grams.

The training data for the baseline model used in the adap-
tation experiments consists of 3600 hours of audio data. One-
third of this training corpora is clean audio from three public
corpora - 420 hours from broadcast news, 280 hours from Mixer
6 [19], and 100 hours from the AMI corpus [20] and 450 hours
of private speech data. This corpora is further augmented with
realistic environmental noises from the JEIDA corpus [21] and
impulse responses from RWCP [22] at various SNRs between 5
to 20 dB to total 3600 hours.

5.2. Supervised Results

We first describe experiments where we train acoustic models
only on the AD corpus. These accent-specific CNN models
serve as a baseline (AD Baseline) and conform to the topology
described in Section 4.1. The CNNs are trained with random
initialization. While this AD data may be more consistent with
the evaluation data, there is significantly less training data (ap-
prox. 20 hours) compared to modern ASR systems and even
the baseline systems use for adaptation. If we assume accented
speech in a minor language with transcriptions, this is a realis-
tic data size. In Table 1, we compare the performance of these
models with those trained with the three styles of data augmen-
tation. Results are presented separately on the LA and Asian
portion of the AD corpus.

Both Voice Transformation and Speed Modification aug-
mentation schemes provide significant gains for both types of
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Table 1: Performance of models trained in an supervised fash-
ion with random initialization (WER)

Augmentation LA Training Asian Training
Scheme and test WER and test WER

AD Baseline 23.20 26.18
AD+Noise 29.75 31.64

AD+VT 19.13 18.99
AD+Speed 17.57 18.00

Table 2: Performance of supervised adaptation with different
data augmentation schemes (WER)

Augmentation LA supervised Asian supervised
scheme adaptation WER adaptation WER

Unadapted 28.30 26.70
AD 14.25 13.69

AD+Noise 15.42 14.95
AD+VT 14.22 13.85

AD+Speed 14.06 13.29

accents. However, the gains are not solely a function of having
more training data available, as the noise augmentation does not
improve performance. It is worth noting that noise addition is a
very effective data augmentation strategy to improve robustness
to noise but it does not help with foreign accent performance.

Next we describe results from adapting the baseline mod-
els which are of the same topology defined in Section 4.1 and
trained with the data described in Section 5.1. This is a strong
unadapted baseline model that has not seen any of the AD data.
Two sets of adapted models are created, one for each of the ac-
cents in the AD corpus using supervised adaptation. Adaptation
is performed via weight decay as described in Section 4.2. Re-
sults are presented in Table 2.

Here we find an important improvement from adapting to
the non-native data. The improvements from additional aug-
mentations of the data based on the speed modification range 1
- 3% relative improvements over the AD data only. Once again,
we find the noise-based addition to degrade performance, VT
provides a very small improvement to Latin American accented
speech, and a minor degradation to Asian accented speech.

5.3. Unsupervised Results

In this section, we describe results from adapting the baseline
model (same as the one used in Section 5.2) using the scheme
described in Section 4.3 using unsupervised adaptation. Specif-
ically, two sets of models are created, one for each of the accents
in the AD corpus using un-supervised adaptation. The teacher
network used to generate the soft labels for adaptation is also
trained on the same 3600 hours of data used to train the base-
line model and has not seen any of the accented data. However,
it is a more complex VGG model comprising 10 convolutional
layers, with a max-pooling layer inserted after every 3 convo-
lutional layers, followed by 4 fully connected layers. All hid-
den layers have ReLU non-linearity. Batch normalization is ap-
plied to the fully connected layers. Posteriors of the top 50 most
likely labels for each prediction of the teacher are then used to
adapt the baseline CNN networks. The KL-divergence criterion
used for training the student model is equivalent to minimizing
the cross entropy of the soft target labels. The baseline model
is also adapted with the data from two augmentation schemes
in the same unsupervised fashion. We chose to drop the noise-
based augmentation scheme for these experiments as there was
no gain with supervised adaptation (See Table 2). The results
are tabulated in Table 3. We can see that the data from VT or
Speed-based augmentation schemes consistently improves the

Table 3: Performance of unsupervised adaptation with different
data augmentation schemes (WER)

Augmentation LA unsupervised Asian unsupervised
scheme adaptation WER adaptation WER

Unadapted 28.30 26.70
AD 24.75 22.03

AD+VT 23.74 21.68
AD+Speed 23.89 21.37

performance over the system trained without any data augmen-
tation (2.8 – 4.0% relative improvements).

5.4. Leveraging Multiple Adaptation Styles

Based on the results in Section 5, we have identified that Voice
Transformation and Speed Modification based data augmen-
tation strategies are powerful techniques to improve recogni-
tion of foreign accented speech, with Speed Modification being
more effective. In this section, we explore ways to determine if
the improvements are complementary, and if so, how to lever-
age them to achieve better performance. We focus our attention
on the models trained from scratch (See Table 1) and try to close
the performance gap to the supervised adaptation approach (See
Table 2)

Merged Training: We evaluated a system trained with half
of the available VT data (57 hours) and half of the Speed Mod-
ification data (57 hours). We use only half of each set so that
each system is trained on the same amount of data. Here we
find the performance to be worse than augmenting using Speed
Modification with a WER on LA accented speech of 18.24%
and Asian accented speech, 19.69%.

Posterior Combination: Next, we combine posteri-
ors from both systems with a 75/25 weighting favoring the
AD+Speed system. Here we find that we can reduce the WER
on LA accented speech further to 17.34% and that of Asian ac-
cented speech to 17.57%.

While we were able to identify an approach by which mul-
tiple data augmentation strategies can improve performance,
Speed Modification remains a remarkably effective data aug-
mentation approach on these experiments.

6. Conclusion
Data augmentation improves recognition of Latin American and
Asian accented speech significantly. We have evaluated this
in three contexts, unsupervised adaptation in a teacher/student
framework, supervised adaptation and training acoustic models
from scratch. In each of these, we found that 1) Speed Mod-
ification is a surprisingly effective data augmentation strategy,
2) Voice Transformation also helps, but is less effective, and
3) Noise Addition is the least effective and can even degrade
performance. These experiments were all performed on accent-
specific models, where we assume that the accent of a speaker
is known ahead of time. The improvements from training ac-
cent specific models with the augmented data are substantial.
Our strategies with associated augmentations provide Word Er-
ror Rate (WER) reductions of up to 30% relative over a baseline
trained with only the accented data. We can see improvements
from supervised and unsupervised adaptation on the augmented
data as well. However the improvements are relatively minor
compared to the case where we train from scratch. Overall, we
find speed modification to be a remarkably reliable data aug-
mentation technique for improving recognition of foreign ac-
cented speech.
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Ö. Aslan, M. Philipose, M. Richardson, and C. A. Sutton, “Com-
pressing LSTMs into CNNs,” CoRR, vol. abs/1511.06433, 2015.

[17] Y. Chebotar and A. Waters, “Distilling knowledge from ensembles
of neural networks for speech recognition,” Proc. Interspeech, pp.
3439–3443, 2016.

[18] J. Thiemann, N. Ito, and E. Vincent, “DEMAND: a collection
of multi-channel recordings of acoustic noise in diverse environ-
ments,” Proceedings of Meetings on Acoustics, 2013.

[19] L. Brandchain, “The mixer 6 corpus: Resource for cross-channel
and text independent speaker recognition,” LREC, 2010.

[20] J. Carletta, “Unleashing the killer corpus: experiences in creating
the multi-everything ami meeting corpus,” Language Resources
and Evaluation, vol. 41, no. 1, pp. 181–190, 2007.

[21] S. Itahashi, “Recent speech database projects in japan,” Proc. IC-
SLP, 1990.

[22] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada,
“Acoustical sound database in real environments for sound scene
understanding and hands-free speech recognition,” LREC, 2000.

2413


