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Abstract
Deep neural network based speaker embeddings become in-

creasingly popular in the text-independent speaker recognition
task. In contrast to a generatively trained i-vector extractor, a
DNN speaker embedding extractor is usually trained discrimi-
natively in the closed set classification scenario using softmax.
The problem we addressed in the paper is choosing a dnn based
speaker embedding backend solution for the speaker verifica-
tion scoring. There are several options to perform speaker ver-
ification in the dnn embedding space. One of them is using a
simple heuristic speaker similarity metric for scoring (e.g. co-
sine metric). Similarly with i-vector based systems, the standard
Linear Discriminant Analisys (LDA) followed by the Proba-
bilistic Linear Discriminant Analisys (PLDA) can be used for
segregating speaker information. As an alternative, the dis-
criminative metric learning approach can be considered. This
work demonstrates that performance of deep speaker embed-
dings based systems can be improved by using Cosine Sim-
ilarity Metric Learning (CSML) with the triplet loss training
scheme. Results obtained on Speakers in the Wild and NIST
SRE 2016 evaluation sets demonstrate superiority and robust-
ness of CSML based systems.
Index Terms: speaker recognition, cosine similarity metric
learning, speaker embeddings

1. Introduction
I-vector-based systems are widely recognized as state-of-the-art
solutions to the text-independent speaker verification problem
[1, 2, 3]. Nonetheless, this problem is gradually gaining atten-
tion from the deep learning perspective. Particularly, studies
[2, 4] make use of the ASR deep neural network (ASR DNN)
in order to divide acoustic space into senone classes, and the
classic total variability (TV) model is applied to discriminate
between speakers in that space afterwards [1].

In such phonetic discriminative DNN-based systems two
major techniques can be distinguished. The first one uses DNN
posteriors to calculate Baum-Welch statistics, and the second
one uses bottleneck features together with speaker specific fea-
tures (MFCC) for a full TV-UBM system training.

Deep learning frameworks are a powerful tool for complex
data analysis [5, 6, 7, 8, 9], and many researches consider train-
ing deep non-linear extractors as a solution to the direct speaker
discrimination task. Several solid studies demonstrate the ad-
vantages of deep end-to-end solutions for discriminating speak-
ers directly in the text-dependent task [10, 11]. Papers [12, 13]
describe a deep network extracting a small speaker footprint that
is used to discriminate between speakers.

Paper [14] presents a well-performing implementation of a
DNN extractor based on the speaker discriminative approach in

the text-independent task. One of the key features of the pro-
posed system is the time-delay neural network architecture of
the extractor [15] with a statistics pooling layer designed to ac-
cumulate speaker information from the whole speech segment
into a single vector called an x-vector. Extracted from an in-
termediate layer of the neural network which comes after the
statiscics pooling layer, x-vectors demonstrate properties sim-
ilar to those of i-vectors from total variability space, which
makes it possible to effectively use them in the standard Linear
Discriminant Analysis (LDA) followed by Probabilistic Linear
Discriminant Analysis (PLDA) [16, 17, 18] backend for segre-
gating speaker information.

Our recent paper [19] demonstrates two alternative deep
speaker extractor configurations which are trained with the help
of the margin based angular softmax layer instead of the usual
softmax classification layer. The work [19] also presents a well-
performing similarity metric learning approach as an alternative
to standard LDA-PLDA backend model.

The learning of the distance/similarity metric between pairs
of the compared samples and investigation of loss functions
have a great importance for a variety of tasks, especially in the
visual recognition domain. Most investigations consider metric
learning on the linear models [20, 21, 22] because they are more
convenient to be optimized and allow to avoid overfitting. The
nonlinear metric models are also of the interest [23, 24, 25] and
improve the recognition performance on some tasks, but they
can be prone to overfitting.

This paper presents an advanced comparative study of ap-
plying cosine similarity metric learning (CSML) [26] approach
for DNN-based speaker embeddings to discriminate speakers.
Unlike [26] we apply the triplet loss objective function in or-
der to train the transformation matrix parameters of cosine sim-
ilarity metric. We compare the proposed backend technique
with commonly used cosine and LDA-PLDA approaches for
different types of deep extractors and in different conditions.
We evaluate the considered speaker recognition systems on the
NIST SRE 2010 det 5 protocol, the NIST SRE 2016 and the
Speaker-in-the-Wild challenge protocols.

2. Deep speaker embeddings
Recent works [27, 14, 19] show successful implementations
of the discriminatively trained deep non-linear extractors in
the text-independent speaker discrimination task. According to
our observations the two main differences between DNN-based
speaker embedding extractors are neural network architectures
and their training strategies. This section briefly describes three
types of extractors we investigate in the paper. All of them
take 23 mel-frequency cepstral coefficients as input [19] and
are based on utilizing statistics pooling layer [14] to accumu-
late speaker specific information over time.
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2.1. X-vectors

The X-vector system is based on a successful implementation
of a deep neural network extractor (X-vectorNet) of the speaker
specific information presented in [14]. The regular softmax
cross entropy loss function is used to train X-vector extractor by
using natural-gradient (NG) modification [28] of the stochastic
gradient descend (SGD) algorithm.

Frame layers constitute the time-delay deep neural network
(TDNN) part of the system that extracts high-level features from
the input signal with a gradually expanding context. After that,
the stats pooling layer folds features along the time axis by ag-
gregating their mean and standard deviation statistics. Eventu-
ally, these statistics are forwarded to segment levels of the net-
work that employ fully-connected layers to extract an x-vector.

2.2. Max pooling embeddings

The paper [19] demonstrates how an alternative training objec-
tive can be used to tune the extractor. More specifically, angu-
lar softmax layer with a proper angular margin instead of the
usual softmax classification layer can be used to discriminate
speakers in the training set. Two different neural network archi-
tectures are proposed for speaker embedding extraction. One
of them (SpeakerMaxPoolNet) is based on max-pooling layers.
This modification of the original TDNN-based extractor [14] in-
cludes layer-wise context shrinking when passing from bottom
to top layers with addition of max pooling operations at each
frame layer. Notably, this approach reduces network size and
speeds up computations. One other tweak is the parametrization
of the rectified linear unit (ReLU) activation function (PReLU)
[29].

The segment-level part of the network is also modified.
Here we use Max-Feature-Map (MFM) activation [30] in place
of ReLU. In contrast to the commonly used ReLU function that
suppresses a neuron by a threshold (or bias), MFM suppresses
a neuron by a competitive relationship. By doing so the MFM
activation acts as an embedded feature selector.

After the classifier is trained, the last fully-connected layer
with its angular softmax activation is removed from the network
in order to obtain an extractor of high-level representations for
speaker specific information.

We refer the reader to [19] for more details about angular
margin softmax and max pooling embeddings system.

2.3. Deep residual embeddings

There are two ways to expand the context in the TDNN architec-
ture: either by widening it at each frame-level layer, or by deep-
ening the network to accumulate richer context with a higher
level of feature abstraction. Our deepest architecture for speaker
embedding extraction is represented by a deep neural network
with TDNN residual blocks (SpeakerResNet) which was also
proposed in our previous work [19]. Similarly to max pooling
embedding approach the extractor is trained with angular soft-
max layer.

Our SpeakerResNet architecture is a deep extractor con-
sisting of time-delay layers with shallow frame-level contexts,
which are set to 3. The segment-level part of the network is
the same as in SpeakerMaxPoolNet. Speaker embeddings are
extracted from the last MFM layer.

3. Baseline backend models
In our experiments we investigate the performance of the
speaker embeddings with a backend and without one. In the last
case simple cosine similarity metric is applied for verification.

Similarly to the i-vectors, LDA followed by PLDA [18] can
be used in the DNN-based speaker embedding space.

3.1. Cosine scoring

Simple cosine scoring (1) is very common in biometric verifica-
tion tasks. When using cosine scoring on centered and usually
whitened embeddings x1 , x2 one measures speaker similarity
by computing the correlation coefficient:

S(x1,x2) =
x1

Tx2

‖x1‖‖x2‖
(1)

3.2. Probabilistic linear discriminant analysis

The PLDA is successfully used in speaker recognition to specify
a generative model of the i-vector presentation. It is assumed
that a speaker embedding can be modeled as:

x = m + Vy + ε (2)

where m is the mean of embeddings, y denotes the speaker-
dependent latent variable with standard normal prior, and ε is
the normally distributed residual noise with zero mean and pre-
cision Λ. Expectation-maximization (EM) algorithm is used
to estimate the parameters of the PLDA model (V,Λ) as pre-
sented in [17]. After the PLDA model is trained on the devel-
opment set it can be used in speaker recognition.

The PLDA model makes it possible to calculate the
marginal likelihood for target and imposter hypothesis, and cor-
respondingly the PLDA score:

S(x1,x2) = ln
P (x1,x2|tar)

P (x1|imp) · P (x2|imp)
(3)

It should be noted that for speaker recognition tasks the
PLDA model performs better when LDA projection and length
normalization are used as preprocessing steps [31].

4. Cosine similarity metric learning
The discriminative metric learning approach can be viewed as
an alternative to simple cosine metric or LDA-PLDA backend
for deep speaker embeddings. According to the formulation of
the CSML [26], a linear transformation A must be learned to
compute cosine similarities (CS) on a pair (x1,x2) as follows:

S(x1,x2,A) =
(Ax1)

T (Ax2)

‖Ax1‖‖Ax2‖
(4)

where the transformation matrix A is upper triangular. Under
this constraint ATA is positive-definite. Unlike [26] we set the
triplet loss objective function for training A:

L(A) =
∑

a,p,n∈T
log(1 + exp(−da,p,n))

A = argmin
A
L(A)

(5)

where da,p,n = sa,p− sa,n is the difference between similarity
scores sa,p and sa,n. T is a collection of training triplets which
is formed from a training dataset. A triplet (a, p, n) contains
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an anchor sample a as well as a positive p 6= a and a nega-
tive n example of the anchor’s identity. As it can be seen, the
minimization of L increases the relative margin between posi-
tive and negative examples, that makes for reducing recognition
error on training and evaluation sets.

The metric learning algorithm is presented below:

Algorithm 1: Cosine Similarity Metric Learning
Input:
- (X,Y) = {xi, yi}Ni=1 : a set of training samples
- d : dimension of embeddings
Output:
- A : transformation matrix

1 A← I // initialization by the identity matrix
2 while iter 6 num iters do
3 while b 6 num batches do
4 L = 0
5 while a 6 bsize do
6 Sa,b ← CS(xb,a,X,A)

s+a,b, s
−
a,b ← f(ya,Y,Sa,b)

da,b ← s+a,b − s−a,b
L+ =

∑
k6Ka,b

log(1 + exp(−da,b,k)
7 end
8 A← argminA L(A)

9 end
10 end

We optimize (5) with regard to matrix A by using Adam
optimizer implemented in the publicly-available Tensorflow
framework [32]. Matrix A is initialized by the identity ma-
trix. At each optimization step, a triplet loss is formulated by
sampling a batch of the training set. The optimization settings
are as follows: a batch size of 50, a learning rate of 10−4. To
ensure an upper triangular view of matrix A we apply masking
of elements under diagonal. Inputs of the algorithm are pairs of
embeddings x ∈ Rd and speaker labels y ∈ N from a training
set. For each anchor a within a batch we calculate similarities
Sa,b and split f(·) them into s+a,b positive and s−a,b negative
subsets according to the speaker labels ya,Y. Using the set of
relative differences da,b between all elements of the subsets we
obtain objective loss L that has to be optimized to train A. The
summation in L is over all the elements in da,b. The number of
the differences is defined as Ka,b = N+

a,b ·N−a,b, where N
+/−
a,b

are the numbers of positive and negative scores in s
+/−
a,b .

Cross validation test is used for early stopping during the
training process. As demonstrated in [33] convergence rate of
the optimization procedure depends on the ability to choose use-
ful triplets that give a large loss value. To satisfy this condition,
we include in the collection of training triplets all positive ex-
amples and only 1500 hardest among all negative examples for
selected anchors.

5. Experimental setup
5.1. Systems configurations

For the x-vector extractor we follow the configuration presented
in [27]. For SpeakerMaxPoolNet and SpeakerResNet systems
we follow our previous setups [19].

It should be noted that all speaker embeddings we used
have the same dimension of 512. In LDA-PLDA scenario we

Table 1: NIST 2010 det5 protocol results for pooled male and
female trials

System Backend EER, % DCF10−3

SpeakerMaxPoolNet7 cosine 3.65 0.587
LDA-PLDA 3.71 0.584

CSML 3.45 0.537
SpeakerResNet24 cosine 3.01 0.498

LDA-PLDA 3.14 0.513

CSML 2.75 0.471
SpeakerResNet44 cosine 2.72 0.497

LDA-PLDA 2.76 0.526

CSML 2.39 0.464

use LDA to reduce the dimension to 200 and apply a simpli-
fied gaussian PLDA model with 200 eigenvoices on the cen-
tered and length-normalized embeddings. Our CSML settings
are described in Section 4. For the x-vector based system we
apply whitening and length normalization of embeddings as the
preprocessing steps for CSML as the best setup. In the other
cases, we applied only length normalization without whitening.
Note that we did not use any adaptation methods apart from
centering on in-domain development set for all of the systems
under consideration.

5.2. Training datasets

We prepared multiple training sets during our series of exper-
iments. For preliminary ”clean” conditions studies, we used
NIST’s 1998-2008 datasets for training with no data augmenta-
tion.

In our main experimental setup we used telephone speech
as training data. It includes Switchboard2 Phases 1, 2, and
3, Switchboard Cellular and data from NIST SREs from 2004
through 2010. In addition, we used data augmentation as it was
done in [34]. Augmentation increases the amount and diversity
of the training data. In total, there were about 55,000 recordings
from 5,277 speakers in this training part, a major part of which
is English speech. Additionally we used Russian speech subcor-
pus named ”RusTelecom” to extend training set. RusTelecom is
a Russian speech corpus of telephone data, collected from call-
centers in Russia. The training part of the RusTelecom database
consists of approximately 70000 sessions from 11087 speakers.

5.3. Evaluation datasets and metrics

For ”clean” conditions studies we used the NIST 2010 eval-
uation dataset for testing under the det5 protocol with pooled
gender trials.

Our experimental setup also includes evaluation on the
Speaker-in-the-Wild [35] (SITW) and NIST SRE 2016 [36]
datasets. In the case of NIST SRE 2016 we used the unequal-
ized protocol.

We report results in terms of equal error-rate (EER) and the
minimum detection cost function (DCF) with PTarget = 10−2

and PTarget = 10−3.

6. Results and discussion
Table 1 demonstrates speaker recognition performance obtained
in ”clean” conditions only in the case of SpeakerMaxPoolNet
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Table 2: Results on NIST SRE 2016 and SITW evaluation protocols. No adaptation implemented.

System Backend NIST2016 SITW
EER, % DCF10−2 DCF10−3 EER, % DCF10−2 DCF10−3

X-vectorNet cosine 28.72 0.976 0.992 29.50 0.951 0.982
LDA-PLDA 15.03 0.997 1.000 11.62 0.772 0.897

CSML 12.87 0.860 0.989 9.62 0.632 0.786
SpeakerMaxPoolNet7 cosine 13.09 0.881 0.988 7.35 0.577 0.759

LDA-PLDA 13.92 0.757 0.901 8.30 0.689 0.858
CSML 12.43 0.837 0.972 7.24 0.539 0.724

SpeakerResNet24 cosine 13.94 0.894 0.987 7.08 0.535 0.703
LDA-PLDA 14.27 0.787 0.925 7.90 0.651 0.831

CSML 11.79 0.848 0.982 6.83 0.510 0.684

Table 3: Results on NIST SRE 2016 and SITW evaluation protocols. Centering on in-domain devset implemented.

System Backend NIST2016 SITW
EER, % DCF10−2 DCF10−3 EER, % DCF10−2 DCF10−3

X-vectorNet cosine 27.56 0.950 0.976 26.10 0.989 0.997
LDA-PLDA 12.30 0.873 1.000 11.73 0.780 0.898

CSML 10.45 0.691 0.924 8.70 0.622 0.800
SpeakerMaxPoolNet7 cosine 11.26 0.731 0.924 6.40 0.540 0.724

LDA-PLDA 13.51 0.736 0.882 7.35 0.649 0.846
CSML 11.09 0.714 0.911 6.64 0.522 0.711

SpeakerResNet24 cosine 11.16 0.713 0.902 5.90 0.513 0.699
LDA-PLDA 13.73 0.763 0.906 6.78 0.627 0.813

CSML 10.29 0.702 0.917 6.37 0.495 0.670

and SpeakerResNet extractors corespondingly. Note that the
final numbers in system names indicate the number of layers
in the extractor. These results show that LDA-PLDA scoring
does not improve the performance relatively to simple cosine
similarity scoring. The best results we obtained were produced
by proposed CSML-based systems. Another observation is that
the deepest architecture SpeakerResNet with 44 layers slightly
outperforms other configurations. For our futher experiments
we decided to exclude so deep configuration for system train-
ing simplification. Unfortunately, at this time DNN speaker em-
bedding systems are still unable to surpass i-vector baseline sys-
tems in terms of quality in clean conditions (see [27, 19]).

Tables 2 and 3 present the results for systems trained ac-
cording to our ”in-the-wild” experimental setup. In this case we
focused on all three extractors: x-vectorNet, SpeakerMaxPool-
Net7, SpeakerResNet24. One can observe that cosine scoring
is not suitable for x-vector based systems while SpeakerMax-
PoolNet7 and SpeakerResNet24 perform well. These results are
also consistent with the results obtained in the ”clean” condi-
tions (see Table 1). The main reasons of this effect are different
training strategies and optimizing loss functions. In contrast to
regular softmax, angular softmax loss is specifically designed to
be used with cosine similarity and trains the last network layers
accordingly [8, 19].

We observe that the x-vector based LDA-PLDA system
needs in-domain centering more than other studied systems (see
Tables 2, 3). As shown in the tables, using CSML backend is
effective and leads to the performance improvement in compar-
ison to LDA-PLDA and simple cosine scoring.

Note that when trained with augmented data, the DNN-
based speaker embedding systems significantly outperform our

previous i-vector-based systems on SITW protocol [37].

7. Conclusions
A comparative study of different backend solutions for DNN-
based speaker embeddings are presented in the paper. This
work demonstrates that cosine similarity metric learning ap-
proach can be effectively used for speaker verification in the
DNN embeddings domain. The performance of deep speaker
embeddings based systems can be improved by using CSML
with the triplet loss training scheme in both ”clean” and ”in-
the-wild” conditions. Results obtained on the Speakers in the
Wild and the NIST SRE 2016 evaluation sets demonstrate ro-
bustness of the CSML based systems. It is interesting to note
that the proposed CSML backend model has two times fewer
parameters than the PLDA model.

The successful implementation of the triplet loss CSML
learning scheme for backend parameters gives grounds to hope
that such strategy is suitable for whole deep speaker extractor
fine tuning. This will be the topic of our further research.
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