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Abstract

Due to limited resource on devices and complicated scenarios,
a compact model with high precision, low computational cost
and latency is expected for small-footprint keyword spotting
tasks. To fulfill these requirements, in this paper, compact Feed-
forward Sequential Memory Network (cFSMN) which com-
bines low-rank matrix factorization with conventional FSMN is
investigated for a far-field keyword spotting task. The effect of
its architecture parameters is analyzed. Towards achieving low-
er computational cost, multiframe prediction (MFP) is applied
to cFSMN. For enhancing the modeling capacity, an advanced
MEFP is attempted by inserting small DNN layers before output
layers. The performance is measured by area under the curve
(AUC) for detection error tradeoff (DET) curves. The exper-
iments show that compared with a well-tuned long short-term
memory (LSTM) which needs the same latency and twofold
computational cost, the cFSMN achieves 18.11% and 29.21%
AUC relative decreases on the test sets which are recorded in
quiet and noisy environment respectively. After applying ad-
vanced MFP, the system gets 0.48% and 20.04% AUC rela-
tive decrease over conventional cFSMN on the quiet and noisy
test sets respectively, while the computational cost relatively re-
duces 46.58%.

Index Terms: keyword spotting, compact feedforward sequen-
tial memory network, multiframe prediction, small-footprint

1. Introduction

Keyword spotting is a task of detecting pre-defined words in
audio stream. Large vocabulary continuous speech recognition
(LVCSR) based method is a traditional solution for this task.
The audio is input to the system and keywords are searched in
the resulting lattice[1, 2, 3]. With rapid development of voice
assistant systems, small-footprint keyword spotting becomes a
hot issue. These systems work on resource constrained devices
and listen continuously for specific keywords to convert the s-
tatus of devices. Thus, besides the metrics for general keyword
spotting systems, low computational cost is also an importan-
t indicator. Obviously, with LVCSR decoding, the approach
mentioned above cannot fulfill it.

A widely used approach for small-footprint keyword spot-
ting is building hidden Markov models (HMMs) to model both
the keyword and the background audio signals [4, 5, 6]. The
decoding graph is built by the paths for each keyword and for
non-keyword audio. Viterbi-based method is applied to search
for the keywords in the decoding graph. Gaussian mixture mod-
el (GMM) is a traditional one for modeling observation proba-
bilities of HMM. With deep neural network (DNN) gradually
takes the place of GMM in speech recognition, DNN and other
neural network based models are also attempted in this struc-
ture [7, 8]. In recent years, the systems that only use neural
network without HMM involved are proposed [9, 10]. Instead

of a searching process, the frame-wise posteriors are smoothed
and directly used to predict the keywords by comparing the pos-
teriors with a pre-defined threshold.

Acoustic model (AM) is crucial in small-footprint keyword
spotting systems. It is expected to be powerful enough to fulfill
the high demands. The first demand is obtaining a high recall at
a low false alarm rate to guarantee basic user experience. The
second is low computational cost, due to the limited resource
on device and energy-saving requirements for the devices using
batteries. Low latency is also a demand, since responses from
the device without obvious delays are required. Meanwhile, the
model should have a stable performance for complicated sce-
narios, like far-field, strong noise and reverberation etc. Due
to the superior performances, deep learning based approaches
are applied into the system. DNN [9] is a widely used model
in this task. Convolutional neural network (CNN) are also ex-
plored [11, 12]. In DNN and CNN based systems, the context
information is introduced into the network by stacking frames
as input. Some systems are built with recurrent neural networks
(RNNs) which are capable of modeling long temporal contexts
[13, 14]. Long short-term memory (LSTM) is the most popular
one among the various RNNS, since it solves vanishing gradi-
ent problem [15, 16]. Time delay neural network (TDNN) is a
feedforward architecture which also can model long temporal
contexts [17, 18]. [19] combines the strengths of DNN, CNN
and RNN, and builds an architecture called convolutional recur-
rent neural network (CRNN).

Feedforward Sequential Memory Networks (FSMN) is de-
signed to model long-term dependency without using recurrent
feedback [20]. Equipped with learnable memory blocks, FSMN
can record history and future information with limited computa-
tional cost. Thus, FSMN is suitable for small-footprint keyword
spotting tasks. Due to the critical demand of our products, we
are interested in exploring the models requiring lower compu-
tational cost without performance decline. Thus, compact F-
SMN (cFSMN) combined with advanced multiframe prediction
(MFP) is adopted. cFSMN is an improved version which com-
bines low-rank matrix factorization with conventional FSMN
[21]. The model trained with MFP predicts multiple frames
with one frame input [22]. An advanced version is adding small
DNNs before output layers, which could improve the model ca-
pacity. The architecture of cFSMN+MFP has been successfully
shipped on our various voice assistant products. In the experi-
ments, DNN and LSTM are compared with cFSMN. DNN is a
commonly-used model with low computational cost but limited
modeling capacity. LSTM has better modeling capacity with
an increase on computational cost. Our proposed structure has
an adavantage on computational cost like DNN and competitive
performance like LSTM at the same time.

The paper is organized as follows: Section 2 introduces our
keyword spotting system, the architecture of cFSMN and the
principle of multiframe prediction. Section 3 presents the ex-
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perimental setup and results. Conclusion is given in Section 4.

2. Keyword Spotting System

The systems without HMM involved always use word as mod-
eling unit, so that the model is specified for the pre-defined key-
words. However, in our products, besides the main keyword,
the system should have the flexibility of adding new keywords.
Thus, our system follows the conventional keyword/background
HMM structure and uses senones (tied cdphone states) as mod-
eling unit. The decoding graph consists of keyword and back-
ground paths. Each keyword path consists of a sequence of
HMMs for one keyword. Adding a keyword needs adding a
keyword path into the graph. Background paths are built for
non-keyword speech, noise and silence. Viterbi searching in the
decoding graph runs separately on the competing keyword and
background paths through token passing. Once an active token
reaches the end of a keyword path, the acoustic information of
the hypothesized segment will be extracted. The system trig-
gers when the regularized ratio of the keyword and background
path scores exceeds a pre-set threshold.

During the searching, the score for each frame is predicted
by an AM. The inputs of the AM are acoustic features, and the
outputs are posterior distribution over the HMM states of key-
word and background models. No language models are used.

2.1. Compact Feedforward Sequential Memory Networks

FSMN is a fully-connected feedforward neural network e-
quipped with learnable memory blocks in hidden layers [23].
Inspired by the design of finite impulse response (FIR) filters,
the memory block adopts a tapped-delay line structure to en-
code long context information into a fixed-size representation.

Considering the additional parameters introduced by the
memory blocks, a variant FSMN architecture namely cFSMN is
proposed [21]. cFSMN adopts low-rank matrix factorization to
standard FSMN, thereby reducing computational cost without
performance decline. Fig.1 gives an illustration of cFSMN. For
each cFSMN layer, a linear projection layer is firstly applied.
This layer makes cFSMN different from FSMN. It is smaller
than hidden layer. Then, its output is fed to the memory block
to form an element-wise weighted sum of current frame and its
context. Finally, the sum is fed to next cFSMN layer through an
affine transform and a nonlinearity.

Each cFSMN layer is calculated according to Eq.1,2,3. h¥
and h!*! denote {th and | + 1th cESMN hidden layer respec-
tively at time ¢. p? is the projection of the Ith cFSMN hidden
layer as shown in Eq.1. The memory block p¢ is encoded by the
context information of pf as shown in Eq.2. Here, ©® denotes
element-wise multiplication of two vectors with same length.
N1 and N2 denotes lookback and lookahead order respective-
ly. The latency of cFSMN is related to the lookahead order in
each memory block. at and c! are the encoding coefficients
of the memory block. The output of cFSMN hidden layer is
calculated as Eq.3.

p; = W'h; + b’ (1)
Ny No
Pr=pi+» aOpi_i+ Y ¢ OPi )
i=0 j=1
hi™' = f(Up; + b"). 3)

With the memory blocks, cFSMN is able to capture long-
term information of sequences. Since there is no recurrent cy-
cles in the network, its computational cost is much less than
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Figure 1: Illustration of cFSMN

LSTM. By increasing the order, cFSMN can record longer con-
text with limited computational cost increase. Thus, compared
with TDNNs whose computational cost is linear growth to the
input context size, FSMN could make use of longer context with
lower computational cost [24]. In addition, like other feedfor-
ward models, cFSMN can be trained more efficiently and reli-
ably with backpropagation (BP) than recurrent network which
is trained with back-propagation through time (BPTT).

2.2. Multiframe Prediction

Conventionally, each input of neural network acoustic model-
s is used to predict the posterior distribution of current frame,
as shown in Fig.2(a). To take advantage of time correlation-
s between feature frames, [22] proposes multiframe prediction
(MFP) approach. As shown in Fig.2(b), the network shares
all hidden layers, and uses multiple output layers for multiple
frames. In this way, each input frame fed into the network can
get the predictions of K consecutive frames. As a result, it sig-
nificantly speed up the training and decoding procedures. The
experimental results on DNNs in speech recognition show that
this method achieves comparable performance to the standard
model, while achieving up to a 4X reduction in the computa-
tional cost of the neural network activations [22].

For complicated tasks, independent output layers may not
be capable of modeling the shared representation of consecutive
frames. For achieving more stable performances, we propose an
advanced MFP architecture. As shown in Fig.2(c), some small
hidden layers are added before each independent output layer
for improving the modeling capacity.

3. Experiments and Results
3.1. Database

Our keyword spotting system are evaluated on a far-field tele-
vision assistant task. In the experiments, the keyword is a four-
syllable Mandarin word. The training data consists of two sets.
One is a 24K-hour simulation set, and the details of simula-
tion method refer to [25]. The other one is a 40-hour keyword-
specific set recorded in real environment.

Two real-recorded test sets are used as positive examples to
evaluate the recall rate. They are 4K utterances recorded in quiet
environment and 8K utterances recorded in noisy environment.
In the noisy environment, two computers make sounds of music,
news or talk shows beside speakers. Meanwhile, we prepare
600-hour negative examples for evaluating the false alarm rate.
These sentences are from various sources, like videos, music
and news broadcasting etc. Finally, a half size non-overlapping
set of positive and negative is used as development set for tuning
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Figure 2: (a) The conventional prediction approach, (b) The MFP approach, and (c) The advanced MFP approach.

the decoding parameters and model architectures.

3.2. Model Training

In our system, one-state HMMs are used to model 917 senones.
The input feature are 80-dimensional log-mel filterbank ener-
gies using 25ms Hamming window with 10ms shift. Since Low-
er Frame Rate (LFR) [26] is adopted, the time step is 30ms in-
stead of 10ms.

All models are trained in a distributed manner using BMUF
[27] optimization on 16 GPUs and frame-level cross entropy
criterion. The cFSMN and DNN models are trained using stan-
dard BP with stochastic gradient descent (SGD), and LSTM is
trained with BPTT. All the networks are randomly initialized by
the Glorot-Bengio strategy described in [28], trained with sim-
ulation data and further finetuned with keyword-specific data.

3.3. Evaluation

The system is evaluated by several metrics: i. false reject, de-
notes the system is not triggered when the keyword is spoken.
It equals to one minus recall rate; ii. false alarm, denotes the
system is triggered when no keywords are spoken. Detection
error tradeoff (DET) curves whose x-axis labels false alarm and
y-axis labels false reject are used to exhibit the overall perfor-
mance. Better models has lower curves. Due to confidentiality,
instead of absolute numbers of false alarm, the numbers on x-
axis are multiplied by a constant. For comparing different mod-
els, we compute area under the curve (AUC) of DET curves,
and smaller AUC indicates better performance. iii. computa-
tional cost, which is evaluated by floating-point operations per
second (FLOPS); iv. latency, which can be calculated according
to the model architecture.

3.4. Impact of the model architecture

Limited by the computational resource, we firstly build a tem-
porary baseline cFSMN which has four cFSMN hidden layers
and two low-rank layers inserted after the input layer and be-
fore the output layer. Consecutive frames within a context win-
dow of 17(8+1+8) are stacked to produce the 1360-dimension
input. The cFSMN layer has 250 nodes with a 128-node projec-
tion layer. N1 and N2 are 5 and 1, which means the network
could lookback 5(/NV1)*4(number of hidden layers)*30ms(LFR)
and lookahead 1(N2)*4(number of hidden layers)*30ms(LFR).
Note that the latency consists of the lookahead part and the right
context of input, so the total latency is 200ms.

We observe the impact of different architectures by chang-
ing the context of input feature, lookback order (/N1), looka-
head order (IN2) and number of cFSMN hidden layers. Table 1
gives a summary of performances of all the architectures. No.1
is the result of baseline model. Note that the order follows the
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Figure 3: DET curves of different models

format of a * b. a denotes N1/N2 and b denotes the number
of layers that have this order. AUC relative change over the
baseline, FLOPS and latency are given in the table.

No.1 to No.4 is a group of experiments to test the impact
of changing the context of input feature. The table shows that
the AUCs of them are similar. Since longer context brings more
computational cost and latency, shorter context would be se-
lected. The change of lookback order is tested from No.5 to
No.7 and No.4. We find that increasing the lookback order
within limits could bring an improvement, while making it too
long will do a harm. The reason is that the average duration
of four-syllable keyword is less than 900ms, and looking back
too much is not necessary and even has negative effect, like the
No.7 which lookbacks 1200ms. The lookahead order will bring
latency to the system, so N2 would set to be smaller than N1.
The results from No.8 to No.10 and No.4 give the trend that in-
creasing lookahead order brings improvement, while the latency
also increases rapidly. The last group shows the results for dif-
ferent number of cFSMN layers. With more cFSMN layers, the
AUC:s get smaller, especially when the number increases from 3
to 4. After 4, the improvements are limited if taking the FLOPS
and latency into consideration.

Conclusions can be made that using short context for in-
put feature can reduce the computational cost effectively with-
out obvious performance decrease, and increasing the lookback,
lookahead order and the number of cFSMN layers within limits
have obvious positive impacts on AUC performance with ac-
ceptable FLOPS and latency.

3.5. System performance

Allowing for metrics listed in Table 1 and the implementation
of our decoder, the No.4 model is selected for further explo-



Table 1: Summary of cFSMNs with different architectures

. AUC relative change | FLOPS | latency

1D input N1 N2 layer quiet T ™) (ms)
1 8+1+8 | 5*%4 1*4 4 - - 65.00 200
2 | 8+1+5 | 5*4 1*4 4 +0.32% -1.70% 61.64 170
3 8+1+2 | 5*%4 1*4 4 -0.54% -3.40% 59.40 140
4 | 24142 | 5%4 1#4 4 -0.11% -2.76% 51.56 140
S | 2+1+2 | 3*4 1*4 4 +1.46% +8.93% 51.46 140
6 | 24142 | 7*4 1*4 4 -4.48% -11.44% 51.72 140
7 | 2+1+2 | 10%4 1*4 4 +23.36% | +3.58% 51.82 140
8 | 2+1+2 | 5%4 1#2+40%2 4 +3.31% +6.70% 51.36 80
9 | 2+41+2 | 5*%4 2%4 4 -9.77% -19.33% 51.61 260
10 | 2+14+2 | 5*%4 3%4 4 -9.82% -19.55% 51.66 380
1T | 2+142 | 5*3 1#3 3 +25.52% | +12.28% 45.06 110
12 | 2+142 | 5%5 1#5 5 -3.51% -6.62% 58.06 170
13 | 2+142 | 5%6 1*6 6 -9.09% -8.58% 64.57 200

Table 2: Performance of various AMs

AUC relative change | FLOPS | latency
model - -
quiet noisy M) (ms)
LSTM - - 105.87 140
DNN +42.85% | +42.76% 53.10 20
cFSMN | -18.11% | -29.21% 51.56 140

ration. According to the FLOPS of cFSMN, we explore various
topologies of DNN and LSTM, and select the best ones for the
comparison. The DNN is built by four fully-connected layers
with 256 nodes and a low-rank layer for maintaining a similar
FLOPS as cFSMN. With the same number of layers and hidden
nodes, the computational cost of LSTM will be several times
more than DNN, so we have to reduce the number of nodes to
190 and layers to 3 for getting a comparable FLOPS (twofold
FLOPS of cFSMN). In addition, cFSMN has a latency from its
lookahead strategy. For feeding the same information to LST-
M, the model is trained with a four-frame target delay which
follows the method in LVCSR [29]. All the models are well-
tuned on the development set.

The performances of these models are shown in Fig.3. The
two figures are results of the two test sets recorded in quiet and
noisy environments respectively. According to the demand of
this task, we focus on the false alarm ranging from 10X to
100X. During this interval, on both test sets, the performance
of cFSMN (green) is definitely better than that of LSTM (blue),
and LSTM is better than DNN (red). The details of comparison
are exhibited in Table 2. Taking the LFR into consideration,
the latencies of LSTM and cFSMN are both 140ms which is
acceptable in our task. The FLOPSs of DNN and cFSMN are
similar, while LSTM needs a double computational cost. Ac-
cording to AUC, the DNN is not competitive, and the cFSMN
gets 18.11% relative AUC decrease in quiet environment and
29.21% in noisy environment compared with the LSTM.

3.6. Training with Multiframe Prediction

For training the model with MFP, the No.4 model in Table 1 is
used as the basic model. Following the topology of standard
MFP, the output layer of the basic model is replaced with mul-
tiple output layers which are fully connected to the last hidden
layer. In the advanced version, small Rectified Linear Units
(ReLU) DNN hidden layers are inserted before each indepen-
dent output layer. In our experiments, the DNN consists of one
125-nodes layers and one 80-nodes layers. It seems that the
advanced version adds more parts into the model than the stan-

Table 3: Performance of MFP training

model AUC relative change | FLOPS | latency
quiet noisy ™M) (ms)
No.9 - - 51.61 260
MFP2 +19.09% | -11.04% 32.24 260
MFP3 +68.77% | +3.54% 25.55 380
MFP4 +86.06% | +39.27% 22.59 500
advanced MFP2 -0.48% -20.04% 27.57 260
advanced MFP3 | +40.27% | -10.73% 20.98 380
advanced MFP4 | +68.06% | +32.55% 18.00 500

dard version. In fact, since the last layer before the output is
designed to be small, FLOPSs of the advanced ones are small-
er than standard ones. These new-created models are finetuned
with keyword data.

The standard and advanced versions of MFP models are
trained for comparison. Meanwhile, different number of frames
that predicted for each input frame are attempted, and the num-
ber is refer to as K. Table 3 exhibits the performances. Note
that MFP will bring K times of lookahead latency due to our
design of cFSMN with MFP. Since we use No.4 model as the
basic model, the No.9 model in Table 1 whose N2 is twice as
that of No.4 model is used for comparing.

Compared with standard MFP, the models trained with ad-
vanced MFP achieve better performances. It verifies that the s-
mall DNN layers help to enhance the modeling capacity. Com-
pared with the No.9 model, when K = 2, the model trained
with advanced MFP gets 0.48% and 20.04% AUC relative de-
creases on the quiet and noisy test sets respectively, meanwhile
the FLOPS reduces 46.58% relatively. However, if K increases
further, the system suffers from a serious performance decline.
We believe lower FLOPS without performace decline could be
obtained through tuning the architecture and training method of
the small DNNs further.

4. Conclusions

In the paper, we present our work on building a cFSMN-HMM
small-footprint keyword spotting system. We analyze the pa-
rameters of cFSMN architecture and compare it with other com-
petitive models. To reduce the computational cost further, the
advanced MFP is successfully applied into our system. The
experiments show that cFSMN have advantages on AUC and
FLOPS compared with LSTM and DNN. Combined with MFP,
cFSMN could obtain lower FLOPS without performance de-
cline.
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