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Abstract
This paper presents a method of learning and modeling unit
embeddings using deep neutral networks (DNNs) to improve
the performance of HMM-based unit selection speech synthe-
sis. First, a DNN with an embedding layer is built to learn a
fixed-length embedding vector for each phone-sized candidate
unit in the corpus from scratch. Then, another two DNNs
are constructed to map linguistic features toward the extracted
unit vector of each phone. One of them employs the unit
vectors of preceding phones as model input. At synthesis
time, the L2 distances between the unit vectors predicted by
these two DNNs and the ones derived from candidate units
are integrated into the target cost and the concatenation cost
of HMM-based unit selection speech synthesis respectively.
Experimental results demonstrate that the unit vectors estimated
using only acoustic features display phone-dependent clustering
properties. Furthermore, integrating unit vector distances into
cost functions, especially the concatenation cost, improves the
naturalness of HMM-based unit selection speech synthesis in
our experiments.
Index Terms: speech synthesis, hidden Markov model, deep
neural networks, unit selection, unit embedding

1. Introduction
Speech synthesis aims to make machines speak like human
beings full of emotions and it benefits a lot of voice in-
teractive applications, such as intelligent personal assistants
and robots. Nowadays, there are two mainstream speech
synthesis approaches, which are unit selection and waveform
concatenation [1] and statistical parametric speech synthesis
(SPSS) [2]. In SPSS, statistical acoustic models are built to
predict acoustic parameters from input texts [3]. Then, the
predicted acoustic features are sent into a vocoder to reconstruct
speech waveforms. Although this approach is able to produce
smooth sound flexibly, the quality of synthetic speech is always
degraded due to the inaccuracy of acoustic parameter prediction
and the usage of vocoders [2].

Unit selection and waveform concatenation is another ap-
proach of speech synthesis which became popular before SPSS
[1]. The basic idea of this approach is to select a sequence
of candidate units from a prerecorded speech corpus and then
concatenate the waveforms of the selected units to produce
the synthetic speech. The basic units for selection could be
syllables, phones or frames. Two cost functions, i.e., target
cost and concatenation cost [4] are usually adopted to measure
the appropriateness of the selected unit sequence. The target
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cost describes the difference between a candidate unit in the
corpus and a target unit to be synthesized. The concatenation
cost measures the continuity between two consecutive candidate
units. Based on these two cost functions, dynamic programming
(DP) search [5] is employed to determine the optimal sequence
of candidate units. Due to the using of natural speech segments
for synthesis, the unit selection and waveform concatenation
approach can usually achieve better naturalness of synthetic
speech than SPSS if a corpus with sufficient and high quality
recordings is available [2].

In the last decade, a hidden Markov model (HMM) based u-
nit selection method has been proposed [6, 7, 8, 9]. This method
applies the statistical acoustic modeling techniques developed
in HMM-based SPSS [10] to unit selection. It derives the
target and concatenation cost functions from statistical acoustic
models. Thus, it is also named a “hybrid” approach for speech
synthesis [2]. The speech synthesis systems developed based on
this method achieved good performance in Blizzard Challenge
evaluations of recent years [11, 12]. On the other hand,
deep learning models, such as deep neural networks (DNNs)
and recurrent neural networks (RNNs) have been successfully
introduced into SPSS to replace HMMs for improving the
accuracy of acoustic modeling [13, 14, 15]. Accordingly, DNNs
and RNNs have also been utilized to guide the unit selection in
“hybrid” speech synthesis by either predicting target acoustic
features or deriving context embeddings [11, 16]. The DNNs
and RNNs used in these methods are similar to the ones used
in SPSS, which predict the acoustic parameters of each frame
from the input context descriptions.

This paper proposes to utilize DNNs for unit selection in
a way different from these methods. It first derives unit em-
beddings using a DNN to represent the acoustic characteristics
of phone-sized candidate units with fixed-length vectors. Then,
phone-level DNN acoustic models instead of traditional frame-
level ones are built to predict the embedding vectors and are
integrated into unit selection criterion. Compared with frame-
level DNNs designed for SPSS, phone-level models can better
capture the dependencies among consecutive candidate units
and are expected to be more appropriate for the unit selection
task. The idea of deriving unit embeddings for unit selection
speech synthesis has been investigated very recently [17, 18].
In these methods, the unit embeddings are learnt either by
combining a context-to-acoustic regression predictor and an
acoustic-to-acoustic autoencoder [17] or by deriving bottleneck
features from context inputs [18].

This paper estimates unit embeddings only using acoustic
features which makes it easy for implementation and also
studies the effects of using unit embeddings for target cost and
concatenation cost calculation specifically by experiments.

The paper is organized as follows. Section 2 briefly review
the HMM-based unit selection method. Section 3 introduces
our proposed methods. Sections 4 and 5 are the experiments
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Figure 1: Flowchart of conventional HMM-based unit selection.

and conclusions respectively.

2. HMM-Based Unit Selection
2.1. Selecting phone-sized speech segments using HMMs

The HMM-based unit selection method using phones as basic
units [7] is adopted to build the baseline system in this paper.
The flowchart of this method is shown in Fig. 1. It includes
two stages, training and synthesis. At the training stage, M
kinds of acoustic features, which are used to measure the
performance of unit selection synthesis systems, are first de-
signed based on some prior knowledge. Given a speech corpus
with context annotations, these features are extracted to train
context-dependent models {Λ1,Λ2, · · · ,ΛM}. These models
could be HMMs or just Gaussian distributions according to the
characteristics of different acoustic features. At the synthesis
stage, the context descriptions C of an input sentence are first
derived by text analysis. Let U = {u1, u2, · · · , uN} denotes a
sequence of phone-sized candidate units to synthesis the input
sentences. The optimal unit sequence U∗ is determined as

U∗ = arg max
U

M∑

m=1

ωm [ln (PΛm(X(U ,m)|C))−

ωKLDDΛm (C(U), C)] , (1)

where X(U ,m) represents the m-th kind of acoustic features
extracted from the unit sequence U , ln (PΛm(X|C)) denotes
the log likelihood of observing X given model Λm and context
information C, C(U) represent the context descriptions of the
candidate unit sequence U , DΛm (C(U), C) calculates the
Kullback-Leibler divergence (KLD) [7] between two distribu-
tions in the model set Λm with context information C(U) and
C, ωm and ωKLD are the weights of each model and the KLD
component which are set manually. Eq.(1) can be rewritten into
the conventional form of a sum of target costs and concatenation
costs [9] and then DP search can be applied to find the optimal
sequence of candidate units.

When building the baseline system in our experiments,
acoustic features are selected (i.e., M = 5), which are

1. the frame-level mel-cepstral coefficients (MCCs) with
dynamic components,

2. the frame-level F0s with dynamic components,
3. the phone durations,
4. the differentials of MCCs between the first frame of

current phone and the last frame of previous phone [19],
5. the differentials of F0s between the first frame of current

phone and the last frame of previous phone [19].
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Figure 2: Flowchart of the Unit2Vec model for learning unit
embeddings.

The first two kinds of acoustic features are modeled using the
context-dependent HMMs for SPSS. The last three kinds of fea-
tures are modeled by context-dependent Gaussian distributions
with decision-tree based model clustering. Only the KLDs of
the models corresponding to the first three kinds of features are
used to calculate Eq.(1) in our implementation.

2.2. Unit pre-selection and unit filtering

In order to increase the computation efficiency of unit selection,
unit pre-selection and unit filtering procedures are conducted
before DP search. The KLD components in Eq.(1) describe
the similarity between the context information of two units, and
do not rely on their acoustic features. Therefore, they can be
calculated efficiently at synthesis time by off-line computation
[19]. In unit pre-selection, the K′-best candidate units with the
minimum sum of KLDs are determined for each target phone.

The unit filtering procedure utilizes the distances between
the acoustic features of the candidates and the acoustic features
predicted by HMM-based SPSS. The top-K candidate phone
units in the unit pre-selection results with minimum acoustic
distances toward the prediction results are finally determined
and used in the DP search.

3. Proposed Methods
3.1. Learning unit embedding using a DNN

Inspired by the word embedding techniques developed for
natural language processing, such as Word2Vec [20], a DNN
named Unit2Vec is designed to learn a fixed-length vector for
each phone unit in the corpus for unit selection from scratch.
The flowchart of the Unit2Vec model is shown in Fig. 2. The
dimension of the unit embedding matrix is R ×D, where R is
the total number of candidates in the corpus and D is the length
of the embedding vector for each candidate. All unit vectors are
stored in the weight of the embedding layer1 as an embedding
matrix. Given a row index, we can extract corresponding unit
vector from the matrix. The phone boundaries in the corpus are
given by HMM-based force-alignment. For each frame in the
corpus, a unit vector is determined by selecting the row index
of the embedding matrix corresponding to the phone unit that
the frame belongs to. Then the unit vector is concatenated with
frame position information to predict the acoustic features (i.e.,
MCCs and F0s) of this frame. The unit embedding matrix is
learnt by minimizing the mean square error (MSE) between
the predicted and the natural acoustic features. Shuffling the

1The implementation of the embedding layer can be found at
https://mxnet.incubator.apache.org/api/python/
gluon/nn.html#mxnet.gluon.nn.Embedding
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Table 1: The 12-dimension frame position information used in
our implementation.

Dim. Description

1-5 5-dim. one-hot vector indicating current state index
6 duration of current state
7 duration of current phone
8 forward position of the frame in current state
9 backward position of the frame in current state

10 forward position of the frame in current phone
11 backward position of the frame in current phone
12 the duration proportion of current state in phone

frame-level training data is necessary, which makes the data
corresponding to a same unit randomly distribute in the training
set and helps to improve the estimation of unit vectors. A 12-
dimension vector is adopted to represent the frame position
information in our implementation as shown in Table 1. The
learnt unit vector of each phone unit is expected to describe the
overall acoustic characteristics of the unit, which will be further
modeled to derive the cost functions for unit selection.

3.2. Modeling unit vectors for HMM-based unit selection

Assume that the sentence to be synthesized is composed of
N phones units and C = {c1, c2, · · · , cN} represents the
context descriptions given by text analysis. For a sequence of
candidate units U = {u1, u2, · · · , uN}, the unit vector and the
context features corresponding to un are written as vn and wn

respectively. Then, two functions for calculating target costs
and concatenation costs are designed as

Ctarg (un, cn) = ‖ft (wn)− ft (cn) ‖2, (2)

Ccon (un−T , · · · , un−1, un, cn)

= ‖ft (wn)− fc (vn−T , · · · ,vn−1, cn) ‖2,
(3)

where ft and fc are two phone-level DNN models which predict
unit vectors from input features.

The ft model maps the context features of each phone
unit toward its unit vector directly, its structure is similar to
the left part of Fig. 3, but has no bottleneck (BN) layer to
squeeze the input. The parameters of ft are trained using the
context features and the learnt unit vectors of all units in the
corpus under minimum MSE criterion. Thus, the Ctarg function
measures the overall acoustic difference between a candidate
unit and a target unit, which can be used as a part of the target
cost for unit selection.

The fc model predicts the unit vector of current phone given
the unit vectors of preceding phones and the context features of
current target as shown in the right part of Fig. 3. Considering
that the dimension of context features is usually much higher
than that of unit vectors, another network is constructed to
extract BN features from original context features as shown in
the left part of Fig. 3. The parameters of fc are trained using the
corpus with context features and learnt unit vectors. At training
stage, the unit vectors learned in Section 3.1 are adopted as the
references for calculating the MSE losses of the two predicted
unit vectors in Fig. 3. At synthesis stage, only the unit vectors
predicted by right part of Fig. 3 are used as the output of the
fc model. The Ccon function measures the appropriateness of
concatenating un with {un−T , · · · , un−1}, which can be used
as a part of the concatenation cost for unit selection. Comparing
with the concatenation cost derived from Eq.(1), Ccon is better
at measuring the long-term dependencies among consecutive
candidate units when increasing the history length T .
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Figure 3: The DNN structure of modeling unit vectors for
concatenation cost calculation.

When using Ccon for concatenation cost calculation, the
computation complexity of DP search becomes O

(
NKT+1

)
.

Therefore, a pruning search strategy designed for frame-sized
unit selection [21] is applied here to reduce the search complex-
ity to O

(
NK2

)
when T > 2.

4. Experiments
4.1. Experimental setup

A Chinese corpus pronounced by a female speaker was used
in our experiments. The scripts were selected from newspa-
pers and the recordings were sampled at 16kHz with 16 bits
resolution. The total 12,219 utterances (≈ 17.25 hours) were
split into a training set of 11,608 utterances, a validation set
of 611 utterances and a test set of 100 sentences. The training
set was used to train ft and fc for cost function calculation.
The validation set was used to evaluate the performance of
predicting unit vectors using ft and fc in our experiments.
The test set was adopted for the subjective evaluation on the
naturalness of synthetic speech. Speech signals were analysed
at 5ms frame shift by STRAIGHT [22] and 12-dimensional
MCCs and a logF0 were extracted at each frame. When
building the baseline HMM-based unit selection system, 5-state
left-to-right HMMs were estimated for each context-dependent
phone2. The frame-level acoustic features for HMM modeling
were composed of the extracted MCCs and logF0 together with
their delta and delta-delta coefficients.

The training set and the validation set were merged together
to provide candidate units for unit selection and to train the
Unit2Vec model. The total number of phone instances was
R = 459, 753. The acoustic features used in this model were
the same as the ones used in HMMs except that continuous
F0 trajectories were adopted and an extra dimension of binary
voiced/unvoiced (U/V) flag was added. The dimension of unit
vectors was set as D = 32. The Unit2Vec model had one
hidden layer with 64 sigmoid units.

When training the ft and fc models, 523-dimension context
features were used. The ft model had three hidden layers and
128 ReLU units per layer. The BN feature extractor in Fig. 3
had three hidden layers and the BN layer was the second one.
The BN layer had 64 hidden units and the other two hidden
layers had 128 units. In the fc mode, the history length was set
as T = 4. The fc model had three hidden layers with 256 ReLU
units per layer. The dropout regularization with a probability of
0.1 was applied when training ft and fc. The MXNet C++ API3

was adopted to calculate ft and fc at synthesis time.
Finally, two systems using our purposed methods were built

to compare with the baseline HMM-based unit selection system

2 The initials and finals of Chinese were treated as phones in our
experiments for simplification.

3https://mxnet.incubator.apache.org/doxygen/
c__predict__api_8h.html

2511



Figure 4: Visualization of the phone-dependent distributions of learnt unit vectors using t-SNE.

Table 2: Average reconstruction errors of learnt unit vectors,
where MCD, RMSE, CORR and UV denote mel-cesptral
distortion, F0 RMSE, F0 correlation and U/V error percentage.

MCD(dB) RMSE(Hz) CORR UV(%)

2.1338 18.4240 0.9673 0.7049

shown in Fig. 1.

Prop TC When calculating target costs, Ctarg was adopted to
replace the lnPΛm(X|C) components in Eq.(1) which
corresponded to frame-level MCCs and F0s;

Prop All Based on Prop TC, Ccon was further added to the
concatenation costs derived from Eq.(1).

These two systems shared the same unit pre-selection and
filtering results as the baseline system where K′ = 200 and
K = 100. The weights in Eq.(1) were tuned by informal
listening for each system.

4.2. Performance of the learning and modeling unit vectors

The visualization of the phone-dependent distributions of the
learnt unit vectors is shown in Fig. 4 by t-SNE [23]. From this
figure we can see that the learnt unit vectors displayed phone-
dependent clustering properties although they were estimated
using only acoustic features.

We further calculated the errors of reconstructing acoustic
features from the learnt unit vectors on the training and vali-
dation sets. Natural frame position information was adopted
here. The average reconstruction errors of different acoustic
features are shown in Table 2. We can see that there still existed
inaccuracy when representing the overall acoustic features of
candidates using 32-dimension unit vectors.

We also evaluated the prediction accuracy of ft and fc by
reconstructing acoustic features from the predicted unit vectors.
This experiment was conducted on the validation set which was
not used for training and natural frame position information was
also adopted. The average prediction errors of different acoustic
features are shown in Table 3. We can see that the prediction
errors were acceptable considering the general performance of
conventional SPSS systems. Besides, the prediction accuracy
of fc was better than ft because the unit vectors of natural
preceding units were adopted as history when evaluating fc.

4.3. Subjective evaluation

Thirty sentences were randomly selected from the test set
and synthesized by the three systems. Three groups of ABX
preference tests were conducted by 10 Chinese native listeners

Table 3: Average prediction errors of ft and fc on the validation
set.

model MCD(dB) RMSE(Hz) CORR UV(%)

ft 3.4267 38.2256 0.8524 5.2502
fc 3.3449 35.1925 0.8746 4.9525

Table 4: Subjective preference scores (%) among the three
systems, where N/P denotes ”No Preference” and p means the
p-value of t-Test between two systems.

Baseline Prop TC Prop All N/P p

40.00 31.67 - 28.33 0.0882
15.33 - 55.67 29.00 <0.001

- 15.00 52.67 32.33 <0.001

and each one was to make a comparison between two systems.
The listeners were asked to judge which sentence in each pair
sounded more natural. The results are summarized in Table 44.
We can see that there was no significant preference between
the baseline system and the Prop TC system (p > 0.05).
According to the comments from the listeners, the Prop TC
system made the synthetic speech sound more expressive than
the baseline system while it introduced more glitches. Further-
more, the Prop All system performed significantly better than
the baseline and the Prop TC systems. This could be attributed
to the fc model built using unit vectors which captured the long-
term dependencies among consecutive candidate units.

5. Conclusions
In this paper, a method of learning and modeling unit vectors
has been proposed to improve the performance of HMM-based
unit selection speech synthesis. The DNN-based Unit2Vec
model learns fixed-length unit vectors for candidate phone
units. The unit vectors are modeled by another two DNNs
to derive the functions for target cost and concatenation cost
calculation. Subjective evaluation results demonstrate the effec-
tiveness of our proposed methods and show that the DNN-based
concatenation cost helped to handle the long-term dependencies
among candidate units. To improve the reconstruction accuracy,
find better phone-dependent distributions, add more features
into unit vectors will be the tasks of our future work.

4The speech examples can be found at http://home.ustc.
edu.cn/˜xiaozh/Interspeech2018/.
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