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Abstract
This paper investigates the approaches of building WaveNet
vocoders with limited training data for voice conversion (VC).
Current VC systems using statistical acoustic models always
suffer from the quality degradation of converted speech. One of
the major causes is the use of hand-crafted vocoders for wave-
form generation. Recently, with the emergence of WaveNet
for waveform modeling, speaker-dependent WaveNet vocoders
have been proposed and they can reconstruct speech with
better quality than conventional vocoders, such as STRAIGHT.
Because training a WaveNet vocoder in the speaker-dependent
way requires a relatively large training dataset, it remains a
challenge to build a high-quality WaveNet vocoder for VC tasks
when the training data of target speakers is limited. In this
paper, we propose to build WaveNet vocoders by combining the
initialization using a multi-speaker corpus and the adaptation
using a small amount of target data, and evaluate this proposed
method on the Voice Conversion Challenge (VCC) 2018 dataset
which contains approximately 5 minute recordings for each
target speaker. Experimental results show that the WaveNet
vocoders built using our proposed method outperform conven-
tional STRAIGHT vocoder. Furthermore, our system achieves
an average naturalness MOS of 4.13 in VCC 2018, which is the
highest among all submitted systems.
Index Terms: voice conversion, WaveNet, vocoder, adaptation

1. Introduction
Voice conversion (VC) aims to process the speech from one
speaker (source speaker) in order to make it sound like be-
ing uttered by another speaker (target speaker) while keeping
linguistic contents unchanged. Various approaches have been
proposed to achieve this task. Among them, the statistical para-
metric voice conversion (SPVC) approach has attracted most
attention in recent years. In this approach, the acoustic features
extracted from the source speech are first mapped toward the
target speaker using a conversion model, which could be a
Gaussian mixture model (GMM) [1, 2, 3], an artificial neural
network (ANN) [4, 5] and so on. Then, the converted acoustic
features are sent into a vocoder to reconstruct the speech
waveforms of the target speaker. Although this approach owns
the advantages of building systems automatically and producing
stable conversion output, the converted speech usually suffers
from the degradation of speech quality and the lack of similarity
to the target speaker.

One reason is the inadequacy of conversion models to
capture the complex mapping relationship between source and
target acoustic features, resulting in the over-smoothness of
generated spectra. Many methods have been proposed to im-
prove the performance of VC by alleviating the over-smoothing
problem. Various deep neural networks (DNN) were designed

to boost the ability of conventional GMMs [6, 7, 8, 9, 10]. Some
methods tried to develop novel training criteria, such as min-
imizing sequence errors (SE) [11] and generative adversarial
networks (GAN) [12]. Moreover, to compensate the smoothed
spectral details, additional features, such as global variance
(GV) [3] or modulation spectrum (MS) [13], were utilized.

The other reason is that artifacts are introduced by using
vocoders for waveform reconstruction. Conventional source-
filter vocoders are designed under assumptions about the speech
production mechanism. Some waveform details, such as the
phase information, are usually discarded during parameteriza-
tion. To avoid this problem, a method of conducting VC at
waveform level directly was proposed [14]. A differential GM-
M (DIFFGMM) was estimated for waveform modulation. This
method can obtain high quality of converted speech for intra-
gender conversion pairs. However, the quality still degraded
due to the F0 conversion in inter-gender conversions.

Recently, the naturalness of statistical parametric speech
synthesis (SPSS) has been significantly improved benefitting
from the emergence of WaveNet for direct waveform modeling
and generation [15]. Speaker-dependent WaveNet vocoders
that can reconstruct waveforms from intermediate acoustic rep-
resentations (e.g., acoustic features extracted by conventional
vocoders, mel-spectrograms) were proposed [16, 17, 18, 19,
20]. The effectiveness of incorporating WaveNet vocoder into
SPVC for waveform generation has also been investigated
[21]. This work adopted a 1-hour dataset for experiments
because the speaker-dependent training of WaveNet vocoders
always requires a relatively large training set of a specific
speaker. This makes it infeasible to apply WaveNet vocoders
to general VC task with small training sets. The method
of building speaker-independent WaveNet vocoders was then
studied [22]. Although this method required no training data of
unknown speakers, it only achieved comparable performance to
STRAIGHT.

In this paper, we explore the approaches of building
WaveNet vocoders with limited training data for VC. Speaker
adaptation techniques have been developed for training
acoustic models with a few samples in speech synthesis and
voice conversion [23, 24, 25]. This paper investigates the
performance of applying similar speaker adaptation techniques
to build WaveNet vocoders with limited training data. First,
an initialization model is trained with a multi-speaker corpus.
Then, it is fine-tuned with the small amount of adaptation
data from the target speaker. This learnt WaveNet vocoder is
used for reconstructing waveforms from the converted acoustic
features during the VC process. We evaluate the performance
of the proposed method in Voice Conversion Challenge (VCC)
2018, which provided approximately 5 minutes of recorded
speech for each target speaker. The experimental results show
that our proposed method can obtain better speech quality
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than STRAIGHT and help to improve the VC quality on both
naturalness and similarity.

This paper is organized as follows: a brief overview of
WaveNet vocoder is described in Section 2. The details of our
proposed methods are introduced in Section 3. Section 4 shows
experimental setups and results. The conclusion is given in the
end.

2. WaveNet Vocoder
WaveNet [15] is an autoregressive generative neural network
and has been recently proposed to model raw audio waveforms
directly. For a waveform sequence x = [x0, x1, ..., xT−1],
WaveNet models the probability of generating x as the product
of conditional distributions, i.e.,

p(x;λ) =

T−1∏

t=0

p(xt|x0, x1, ..., xt−1;λ). (1)

To learn the long-term dependencies among temporal wave-
form samples efficiently, WaveNet utilizes stacks of causal
dilated convolution layers and gated activation units. The
calculation at each layer is

z = tanh(Wf,k ∗ y)� σ(Wg,k ∗ y), (2)

where y, z are the input and output vectors, k denotes the
layer index, f and g represent the filter and gate respectively,
Wf,k and Wg,k are trainable weight matrices, ∗ denotes
a convolution operator, � is an element-wise multiplication
operator, and σ(·) denotes a sigmoid function.

WaveNet vocoders aim to recover time-domain waveform
samples from intermediate representations of speech signal-
s. They are developed based on the conditional version of
WaveNet, which is realized by adding an extra input to each
layer to control waveform generation. Then, the calculation at
each layer output becomes

z = tanh(Wf,k∗y+Vf,k∗h)�σ(Wg,k∗y+Vg,k∗h), (3)

where h denotes the condition feature vector, Vf,k and Vg,k are
trainable convolution filters.

In WaveNet vocoders, the intermediate representations are
acoustic descriptions extracted from waveforms, such as the
acoustic features extracted by conventional vocoders (e.g., mel-
cepstra and F0 extracted by STRAIGHT analysis) [16, 17] or
the raw mel-spectrograms given by STFT [18, 20]. These
intermediate representations are used as the condition input h
in Eq.(3). Then the mapping from the intermediate representa-
tions to the time-domain waveforms is learnt in a data-driven
way. Therefore, WaveNet vocoders are capable to recover
some waveform details that are not contained in the interme-
diate acoustic representation, such as the phase information.
Furthermore, WaveNet vocoders get rid of the constraint of
linear filtering since neural networks provide the flexibility of
mapping input toward output in a non-linear way.

On the other hand, in contrast to conventional vocoders,
WaveNet vocoders need to be trained beforehand. The speech
data of a few hours from the reference speaker is usually
adopted in order to train a high-quality WaveNet vocoder in a
speaker-dependent way.
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Figure 1: The process of voice conversion using a WaveNet
vocoder.

3. Proposed Methods
3.1. Building WaveNet vocoders with limited training data

Speaker adaptation methods have been proposed to facilitate
model training with small datasets, such as personalized speech
synthesis with a few samples [23]. In these methods, a speaker-
dependent model is usually trained by adapting a pre-trained
multi-speaker model for the reference speaker. Considering
common characteristics shared among different speakers, such
as speech pronunciation, it is supposed that speaker adaptation
based on the learnt multi-speaker model would facilitate the
model training for the reference speaker, thus decrease the
amount of required data. We investigate the effectiveness of
applying this technique to building WaveNet vocoders with
limited training data of the reference speaker. The proposed
method includes two steps: the training of an initialization
model with a multi-speaker dataset and the adaptation with the
limited training data of the reference speaker.

The acoustic features (mel-cepstra and F0) extracted by
STRAIGHT vocoder are used as the intermediate representation
features in this study. In order to get the initialization model, a
unified WaveNet vocoder model is first trained with a multi-
speaker dataset. The acoustic features augmented with a
speaker embedding vector are used as the condition input. The
network parameters and the speaker embedding vectors are
learnt simultaneously following the WaveNet framework. It
is expected that the speaker embedding vectors can capture
speaker-related information [18, 22]. Then, these learnt speaker
embedding vectors are discarded and only the model parameters
dealing with the acoustic features are used as the initial model
parameters for adaptation. In the adaption step, the speaker-
dependent WaveNet vocoder is trained by updating all initial
model parameters using the training data from the reference
speaker.

3.2. Voice conversion using a WaveNet vocoder

Fig. 1 presents the process of voice conversion using a WaveNet
vocoder [21], in which the WaveNet vocoder employs the
acoustic features extracted by STRAIGHT as input [17]. In
this process, the acoustic features of the source speaker are
first converted toward the target speaker using a conversion
model. Then, the waveform samples of the converted speech
are synthesized by sending the converted acoustic features into
the WaveNet vocoder built for the target speaker.

In this paper, the conversion model is built based on a
framework similar to the context posterior probabilities (CPPs)
based VC method [26]. A speaker-independent content feature
extractor is built first, which maps acoustic features toward
linguistic labels for each frame. This model is used to extract
content features from source speech at the conversion stage.
Then a speaker-dependent acoustic feature predictor is trained
using the training data of the target speaker, which converts
the content features toward the acoustic features of the target
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speaker. Because the content feature extractor and the acoustic
feature predictor are trained separately, this conversion model
can deal with parallel and non-parallel VC tasks in the same
way. Finally, the WaveNet vocoder of target speaker, which is
built following the method introduced in Section 3.1, is used to
reconstruct waveforms from the converted acoustic features.

4. Experiments
4.1. Experimental setups

We evaluated the proposed method on the VCC 2018 HUB
task [27], which was a parallel training task. The database
included 4 source speakers (2 female and 2 male) and 4 target
speakers (2 female and 2 male), respectively. They were all
professional US English speakers. 81 sentences of each speaker
were released for training. The total duration of recordings for
each speaker was about 5 minutes. The number of sentences for
testing was 35. The recordings were sampled at 22.05kHz with
16bit resolution. We downsampled them to 16kHz/16bit for
experiments. For the multi-speaker WaveNet vocoder training,
an internal dataset of iFlytek was employed. It consisted of
recordings from 20 speakers (10 male and 10 female), with a
total duration of approximately 80 hours.

In our experiments, we randomly chose 76 sentences from
each speaker for training and the remaining 5 sentences for vali-
dation. 41-dimensional mel-ceptral coefficients, 3-dimensional
logarithmic fundamental frequency (static, delta and delta-
delta) and a unvoiced/voiced (U/V) flag were used to compose
the condition vector of acoustic features at each frame in the
WaveNet vocoder. STRAIGHT vocoder was employed to
extract those features as well as 5-band aperiodicities at 5 ms
frame shift. The F0 parts in unvoiced regions were interpolated
and the extracted F0 values were manually revised in order
to prevent the extraction errors from affecting the training of
WaveNet vocoder.

We trained a WaveNet vocoder for each target speaker. The
architecture of WaveNet vocoders included 4 blocks, with 10
dilation layers in each. The dilation in each block started from
1 and was doubled for every layer until it was up to 512. The
filter size of causal dilated convolution was 2. For the skip-
connection and the 1×1 convolution layer before the softmax
output layer, the number of channels was set to 256. The
number of channels in all the other convolution layers, such
as the residual connections, the filter and gating convolution
layers, was set to 100. Besides, to alleviate the quantization
noise in synthetic speeches, we modelled the 10-bit (µ-law)
waveforms with a 1024-way categorical distribution [28]. The
conditional network consisted of 5 convolution layers and the
network output was repeated 80 times directly in order to match
the temporal resolution of waveforms. The dimensionality of
the speaker embedding vector was 50. All WaveNets were
optimized with the Adam optimization method [29] with a
constant learning rate 1 × 10−5. The multi-speaker WaveNet
was trained for 440,000 steps. During adaptation, the WaveNet
models were further updated for 10,000 steps.

When building the conversion model introduced in Section
3.2, the speaker-independent content feature extractor was
estimated using hundreds of hours of recordings with aligned
phonetic transcriptions. The acoustic feature predictor for each
target speaker consisted of one feedforward layer, two recurrent
layers of long-short term memory with projection (LSTMP)
and one linear output layer. The number of units in each
hidden layer was 512 while the number of the projection units
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Figure 2: Mean opinion scores on speech quality of reconstruct-
ing waveforms using STRAIGHT vocoder and WaveNet vocoder
respectively. Error bars show 95% confidence interval.

in LSTMP layers was 256. As BAPs can help to improve the
quality of reconstructed speech [30], the 5-band BAPs along
with the full 45-dimensional acoustic features used in WaveNet
vocoder were predicted together in this network. Stochastic
gradient descent (SGD) algorithm was used to train this model
with a learning rate of 1 × 10−3 and a momentum of 0.9. For
each target speaker, the model parameters were not learnt from
scratch. They were initialized by a pre-trained multi-speaker
model to deal with issue of limited training data.

4.2. Performance of WaveNet vocoders

To evaluate the performance of WaveNet vocoders trained using
our proposed methods, we conducted a mean opinion score test
to compare the waveforms synthesized by the learnt WaveNet
vocoder with those synthesized by STRAIGHT vocoder togeth-
er with natural waveforms. 7 non-native English speakers took
part in this test. The results shown in Fig. 2 demonstrate that the
WaveNet vocoder outperformed STRAIGHT on speech quality
significantly. It indicates the effectiveness of our proposed
methods in building WaveNet vocoders with only 5 minutes of
training data.

4.3. Performance of VC with WaveNet vocoders

Furthermore, we conducted subjective evaluations to assess the
naturalness and similarity of voice conversion using WaveNet
vocoders. Two systems were compared in our experiments,
which were

• VC-STRAIGHT: Conventional VC with STRAIGHT
vocoder for waveform generation.

• VC-WaveNet: VC with WaveNet vocoder for waveform
generation. The WaveNet vocoder of each target speaker
was trained following the proposed adaptation method.

A mean opinion score test was adopted to evaluate the
naturalness of converted speech while the speaker similarity
was evaluated by a preference test. 40 sentences, randomly
selected from 8 conversion pairs (including all conversion
types) were rated by 7 non-native English speakers.

4.3.1. Naturalness

Fig. 3 shows the results of the MOS test. The error bar presents
95% confidence interval. We can see that WaveNet vocoders
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Figure 3: Mean opinion scores on naturalness of VC systems
using STRAIGHT vocoder and WaveNet vocoders respectively.
Error bars show 95% confidence interval. “FT”, “MT”, and
“All” denote the conversion pairs of female target speakers,
male target speakers and all target speakers.
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Figure 4: Preference scores on speaker similarity of VC systems
using STRAIGHT vocoder and WaveNet vocoders. “NP” stands
for no preference. The p-values of the t-tests for MT, FT and
ALL are 1.1×10−18, 2.2×10−12 and 3.3×10−29 respectively.

significantly improved the naturalness of the converted speech
comparing with STRAIGHT. This conclusion is consistent
among conversion pairs of female target speakers (FT) and male
target speakers (MT).

4.3.2. Speaker similarity

The results of the preference tests on speaker similarity are
summarized in Fig. 4. Similar to the naturalness results present-
ed in Fig. 3, VC-WaveNet outperformed VC-STRAIGHT on
speaker similarity as well. More than half of the test utterances
generated by VC-WaveNet were considered to be more similar
to the target speakers than VC-STRAIGHT.

4.4. Evaluation results of VCC 2018

Fig. 5 shows the evaluation results of all systems in VCC 2018.
Our system performed best among all participants on both
naturalness and speaker similarity. Benefitting from effectively
training WaveNet vocoders with limited target data, our system
outperformed all the other systems on naturalness significantly.
Our system achieved a MOS score of 4.13, while the MOS score
of natural speech (target) was 4.64.

The baseline system B01 was a vocoder-free system based
on the DIFFGMM [14]. We can see that B01 performed
better than all other systems except our system on naturalness.
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Figure 5: Scatter plot of the overall naturalness and speaker
similarity scores of all systems in VCC 2018.
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Figure 6: Mean opinion scores of different conversion pairs of
B01 and N10 (our system) in VCC 2018.

Fig. 6 presents the MOS scores of our system (N10) and B01
on different types of conversion pairs. We can see that B01
performed well on intra-gender conversion pairs. However,
the performance greatly degraded on inter-gender conversions.
Compared with B01, our system was capable to achieve stable
performance on all conversion pairs.

5. Conclusion

In this paper, we have proposed an approach to build WaveNet
vocoders with limited training data for VC. The speaker-
dependent WaveNet vocoders are estimated by adapting an
initialization model, which is learnt using a multi-speaker
dataset. Benefitting from the use of this speaker adaptation
technique, a stable speaker-dependent WaveNet vocoder can
be obtained with only 5 minute training data of target speaker.
Both the results of our internal experiments and VCC 2018
evaluations demonstrate the effectiveness of this method. The
proposed method can also be applied to improve the quality of
personalized speech synthesis systems. We will investigate this
topic in the future. Applying speaker adaptation techniques to
other neural vocoders, such as SampleRNN-based ones [31],
will also be a task of our future work
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