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Abstract

This paper investigates the use of deep neural networks
(DNNgs) for the task of spoken language identification. Vari-
ous feed-forward fully connected, convolutional and recurrent
DNN architectures are adopted and compared against a baseline
i-vector based system. Moreover, DNNs are also utilized for ex-
traction of bottleneck features from the input signal. The dataset
used for experimental evaluation contains utterances belonging
to languages that are all related to each other and sometimes
hard to distinguish even for human listeners: it is compiled from
recordings of the 11 most widespread Slavic languages. We also
released this Slavic dataset to the general public, because a sim-
ilar collection is not publicly available through any other source.
The best results were yielded by a bidirectional recurrent DNN
with gated recurrent units that was fed by bottleneck features.
In this case, the baseline ER was reduced from 4.2% to 1.2%
and Clavg from 2.3% to 0.6%.

Index Terms: language identification, Slavic languages, deep
neural networks, convolutional neural networks, recurrent neu-
ral networks

1. Introduction

Spoken language identification (LID) is the task of correctly
determining the language spoken in a speech utterance. In re-
cent years, many scientific efforts have been dedicated to this
task, and nowadays, LID modules form an integral part of
many speech processing applications including, e.g., systems
for multilingual speech recognition or spoken language transla-
tion. LID systems are also used for spoken document retrieval,
emergency call-routing or in dialog systems. Although the ac-
curacy of all these systems is constantly improving, it is still not
perfect. For example, one of the significant bottlenecks of LID
systems is to distinguish between closely related languages.

Most of the state-of-the-art LID systems utilize various ad-
vanced acoustic modeling techniques.

One of the most popular techniques relies on the total vari-
ability factor analysis, and it is known as an i-vector frame-
work [1, 2]. I-vector is a fixed length representation of an ut-
terance, and it jointly contains information about the speaker,
language, etc. (e.g., LDA might be applied to obtain discrimina-
tive features). To extract i-vector features, hand-crafted shifted
delta cepstral features (SDC) derived from mel-frequency cep-
stral coefficients (MFCCs) [3] and phone log-likelihood ratios
(PLLRs) [4] are most commonly used as inputs. The i-vector
extraction is usually followed by a classification stage, where
multiclass logistic regression, cosine scoring or Gaussian mod-
els are utilized. The major drawback of the i-vector approach is
the decreasing performance on shorter test utterances [5].

Over the past few years, deep neural networks have had an
upsurge in popularity in LID systems thanks to their outstanding
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performance in many other speech processing applications (e.g.,
speech recognition [6]). Both direct and indirect approaches
exist for utilizing deep learning for LID.

In the former case, so-called bottleneck features (BTNs) are
widely used in many systems [7, 8, 9] due to their superior per-
formance. Usually, these features are extracted from a DNN
trained to discriminate individual physical states of a tied-state
triphone model at first, and then used as inputs to an i-vector
based system [10, 11].

In the latter case, various end-to-end systems based on dif-
ferent DNN architectures are trained to identify the language in
the input utterance. In 2014, feed-forward DNN yielded excel-
lent results on short utterances (less than 3 seconds) [5]. Since
then, other more advanced architectures, such as attention based
DNNs [12], convolutional neural networks (CNNs) [13, 14, 15],
time delay neural networks (TDNNs) [16, 17] or sequence sum-
marizing neural networks (SSNNss) [18] have also been success-
fully used. The most recent direct approaches take advantage of
recurrent neural networks (RNNs) and their context modeling
ability. Gated recurrent unit (GRU) RNNs [19], long short-term
memory (LSTM) RNNs [20, 21, 22, 23, 24] and bidirectional
LSTM RNNss [25, 26] all yield the state-of-the-art performance.

In this paper, various state-of-the-art LID methods are in-
vestigated. We adopt feed-forward DNNs at first, then CNNs,
and finally also unidirectional as well as bidirectional RNNs
with both previously mentioned types of units. We also com-
bine these direct methods with the indirect approach: we feed
the networks with bottleneck features. To the best of our knowl-
edge, results of some of these approaches and their comparison
on one dataset have not yet been published for LID.

The experimental evaluation is performed on a dataset con-
sisting of the 11 most widespread Slavic languages. These were
selected for two main reasons.

The first is that most of these languages are related to each
other which makes our dataset more challenging. This is espe-
cially true for those pairs of languages that belong to the same
language branch. For example, it is difficult to distinguish be-
tween Croatian and Serbian (South Slavic branch), even for na-
tive speakers.

Secondly, only results obtained for several (pairs) of Slavic
languages have been published so far (e.g., [27]). For exam-
ple, Polish and Russian formed one cluster of related languages
within the last Language Recognition Evaluation (LRE) chal-
lenge in 2017 [28]. On the contrary, a detailed analysis for
all evaluated Slavic languages using a confusion matrix is pre-
sented in this work.

Finally, note that our dataset of Slavic languages is available
for download to the general public'.

Thttps://owncloud.cesnet.cz/index.php/s/gXHKFsQUDEqe34G
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2. Dataset of Slavic languages

Slavic languages are spoken by approximately 320 million peo-
ple throughout Eurasia mostly in Central, Eastern, and South-
ern Europe. There are at least ten languages with over a million
native speakers (e.g., Russian (~150 million speakers), Polish
(~55 million speakers), Czech (~11 million speakers), etc.).

Slavic languages can be divided on the basis of geograph-
ical and genealogical principle into three main branches: East,
South and West Slavic languages. Most of the Slavic languages
belonging to the same branch are somehow close to each other.
However, while some languages may have similar phonetics
(e.g., Croatian and Serbian are practically identical in their pho-
netics), some languages may have different phonetics (e.g., Pol-
ish or Bulgarian are phonetically somewhat more similar to
East Slavic languages than to languages in their branch). Every
Slavic language has its unique phonetic inventory which distin-
guishes it from other languages (except for the previously men-
tioned Croatian and Serbian). It can help with language identifi-
cation. Moreover, rich morphology, a high degree of inflection,
and more or less free word order result in a large linguistic com-
plexity of all these languages.

Due to the lack of an extensive audio dataset for all Slavic
languages, we had to create a new one. It is compiled from
recordings belonging to the 11 most widespread Slavic lan-
guages so that it covers all three branches:

» East Slavic languages - Belarusian, Russian, Ukrainian,

¢ South Slavic languages - Bulgarian, Croatian, Macedo-
nian, Serbian, Slovene,

* West Slavic languages - Czech, Polish, Slovak.

The source of data for individual languages varies. A ma-
jority of the data originates in TV and radio broadcasts, and it
was retrieved as described in detail in [29]. It formerly served
for acoustic model training for speech recognition, and thus it
contains mostly clean speech. The rest of the dataset is formed
by microphone recordings.

The data for each language is compiled from recordings be-
longing to multiple speakers (with both genders represented). It
is divided into two non-overlapping subsets: 20 hours of record-
ings are available for training and 500 utterances for evaluation.
The focus is on short recordings (similar to [5]), the maximal
duration of an evaluation recording is 5 seconds.

3. Evaluation metrics

Within the scope of this paper, two different performance met-
rics (namely error rate (ER) and Clyg) were utilized to evaluate
the performance of LID approaches.

The first metric, error rate, is defined as:

Mutt

utt

ER[%]

%100 | 1

where M.+ is the number of misclassified speech utterances,
and Nyt is the total number of evaluated speech utterances.

The second metric is the official metric of the 2015 NIST
Language Recognition Evaluation, C,ye. Detailed information
about this closed set multi-language cost function and its defi-
nition can be found in the 2015 LRE Plan [30].
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4. Investigated approaches and results
4.1. Acoustic features used

Three different types of 39-dimensional feature vectors were
extracted within all of the following experiments: MFCCs (13-
dimensional with A and AA coefficients), filter bank coeffi-
cients (FBCs) and bottleneck features. Both MFCCs and FBCs
were computed using 25 ms frames of the signal with frame
shifts of 10 ms. As suggested, e.g., in [7, 8, 9], bottleneck fea-
tures were extracted from DNN trained to discriminate physical
states (senones) of a Czech tied-state triphone acoustic model.
This DNN was trained on 270 hours of speech recordings be-
longing to the Czech language and using hyper-parameters as
follows: 5 hidden layers with the third one being the bottle-
neck layer, 1024 neurons per hidden layer (39 for the bottle-
neck layer), ReLU activation function (sigmoid for the bottle-
neck layer), a learning rate of 0.08 and 50 epochs of training.

The input for DNNs consists of 11 consecutive FBC vec-
tors, 5 preceding and five following the current frame. Normal-
ization of these vectors was performed within a 1-second long
window.

4.2. Baseline i-vector approach

To set a baseline performance, an i-vector system was trained
using a full covariance GMM-UBM based system and logis-
tic regression model. Within this training, MFCCs filtered by
voice activity detection were employed, and the final extracted
i-vectors were 600-dimensional. Note that this baseline ap-
proach follows the IreQ7 recipe as present in Kaldi ASR?.

The results yielded by this system are presented in the first
row of Table 1. They provide a decent baseline (i.e., ER of 4.2%
and Clayg of 2.3%) for further experimental work.

4.3. Feed-forward fully connected DNN architecture

The first adopted deep learning architecture was a feed-forward
fully connected DNN. Its output was formed by a softmax layer
with 11 neurons (this value corresponds to the number of lan-
guages). This DNN was trained using Torch framework® to di-
rectly distinguish between languages (i.e., direct method). The
hyper-parameters used for training were similar to those for ex-
traction of the bottleneck features (i.e., 5 hidden layers, 1024
neurons per hidden layer, ReLU activation function, a learning
rate of 0.08 and 20 training epochs).

During the classification phase, a probability vector was ob-
tained for each frame of given utterance (i.e., by doing a forward
pass). These vectors were then averaged, and the language with
maximum average probability was selected as an output.

The obtained results for all three types of considered fea-
ture vectors are summarized in Table 1. They show that
MEFCCs slightly outperformed FBCs, but the difference was
rather small. It is also evident that the direct approaches (using
both MFCCs and FBCs) did not exceed the baseline i-vector
based system. On the contrary, the baseline system was outper-
formed significantly by bottleneck features (see the fourth row
of Table 1). The improvement was over 2 % in ER (from 4.2%
to 2.0%) and over 1% in Cayvg (from 2.3% to 1.1%).

Note that we also performed several experiments (not pre-
sented in this paper) with the size of the bottleneck layer, but no
further reduction in error rate was obtained.

Zhttp://kaldi-asr.org/
3http://torch.ch/



Table 1: Results of feed-forward fully connected DNN for differ-
ent types of features in comparison to baseline i-vector system.

approach ER [%] Clavg [%]
LR + i-vectors 4.2 2.3
DNN + MFCCs 5.7 3.1
DNN + FBCs 5.9 33
DNN + BTNs 2.0 1.1

4.3.1. The influence of context window size

The next experiment was focused on the importance of the size
of input feature context window. The reason is that additional
context information may be beneficial for reduction of the er-
ror rate of the system. On the contrary, broader context slows
down the training and evaluation phases. Several DNNs with
a variety of context window sizes from 5-1-5 (i.e., 0.1 seconds
long window) up to 50-1-50 (i.e., 1 second) were trained using
bottleneck features and evaluated.

The reached results are summarized in Table 2. They show
that our initial context window size was too short and degraded
the performance. The ideal context window size seems to be
longer and around 15-1-15 (i.e., 0.3 seconds). In this case, ER
decreased from 2.0% to 1.2% and Clayg from 1.1% to 0.7%.

Table 2: Results for different context window size in the system
with bottleneck features and feed-forward fully connected DNN.

context window size  ER [%]  Cavg [%]

5-1-5 2.0 1.1
10-1-10 1.3 0.7
15-1-15 1.2 0.7
20-1-20 1.2 0.7
25-1-25 1.5 0.8
50-1-50 6.6 3.6

4.4. CNN architectures

The next type of DNN networks we focused on were convolu-
tional networks. In contrast to [13], we also tried to utilize the
bottleneck features.

The employed CNNs were composed of two convolutional
layers and three fully connected layers (each with 1024 neu-
rons). The inputs consisted of 31 feature maps (i.e., context
window size of 15-1-15), each 391 in size. Our experiments
were performed with FBCs and BTN features. The first con-
volutional layer was comprised of 105 feature maps 39x1 in
size followed with a 3:1 max-pooling layer. The second con-
sisted of 157 feature maps 13x 1 in size. The rest of the hyper-
parameters was set as stated in Sect. 4.3, and the CNNs were
also trained using Torch framework.

To explore deeper configurations of CNNs, an additional
max-pooling and third convolutional layer (209 feature maps
131 in size) were added, and the CNNs were trained.

The achieved results are depicted in Table 3. As expected,
the BTN features outperformed FBCs by a large margin (by al-
most 4%). The more interesting fact is that the difference in per-
formance of DNNs and CNNs was practically negligible. There
was no gain in using more complex architecture. The deeper
configuration of CNN only worsened the results.

Table 3: Results of architectures based on CNNs.

approach conv. layers ER [%] Clavg [%]
CNN + FBCs 2 4.9 2.7
CNN + BTNs 2 1.3 0.7
CNN + FBCs 3 6.4 3.5
CNN + BTNs 3 1.7 0.9

4.5. RNN architectures

The last DNN architecture we explored was the recurrent neu-
ral network. At first, we focused on long short-term memory
RNN architecture (e.g., [20, 31]), but unlike these cited papers,
we also investigated the use of bottleneck coefficients. After
that, we examined the gated recurrent unit RNNs [19]. Finally,
we also explored the possibilities of bidirectional RNNs. We
studied slightly different configurations of bi-LSTM RNNs as
in [26].

The RNNs were comprised of two recurrent layers (each
with 1024 neurons) and two fully connected layers (1024 neu-
rons per layer). The inputs were once again FBCs, and BTN
features with a context window size of 15-1-15. The rest of the
hyper-parameters remained the same as in Sect. 4.3. The RNNs
were trained using the ADAM optimizer in PyTorch*. Note that
for unidirectional models, the final language for each utterance
was obtained by averaging only last 10% of frame probabili-
ties, as suggested in [31], to exploit the learning capabilities of
RNNs.

The results are summarized in Table 4. First, as in previous
experiments, BTN features outperformed the FBCs. However,
the difference in performance was distinctly smaller than that
of CNN & DNN architectures. Recurrent neural networks can
thus extract more information about the target language from
standard acoustic features. Secondly, GRU RNNs exceeded the
LSTM RNNs in performance (e.g., 1.4% vs. 1.2% ER). Next,
the bidirectional RNNs performance was mixed. Although the
bi-LSTM RNNs performed slightly worse than the unidirec-
tional equivalent, the bi-GRU RNNs outperformed its counter-
part. However, the gain in performance was rather small (less
than 0.1% in ER and 0.1% in Clyg). Furthermore, the differ-
ence in results between feed-forward fully connected DNN and
bi-GRU RNN was rather low as well (0.1% in Cavg)). The bi-
GRU RNN yielded slightly better results but at the cost of more
complex architecture to train and evaluate. Finally, the perfor-
mance of the bidirectional GRU RNN was the best throughout
this paper.

Table 4: Performance of systems based on RNNs.

approach ER [%] Clavg [%]
LSTM + FBCs 3.0 1.7
LSTM + BTNs 1.4 0.7
GRU + FBCs 2.5 1.4
GRU + BTNs 1.2 0.7
bi-LSTM + FBCs 3.0 1.6
bi-LSTM + BTNs 1.5 0.8
bi-GRU + FBCs 2.4 1.3
bi-GRU + BTNs 1.2 0.6

“http://pytorch.org/
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Figure 1: Comparison of confusion matrices produced by baseline i-vector system (left) and the best bi-GRU RNN system (right).
(CZ - Czech; SK - Slovak; PL - Polish; RU - Russian; SI - Slovene; UA - Ukrainian; RS - Serbian; MK - Macedonian; HR - Croatian;

BY - Belarusian; BG - Bulgarian)

4.6. Error analysis and confusion matrices

More detailed results obtained in the form of confusion matrices
are depicted in Figure 1. They show that most of the errors
are confusions between related languages. These are mostly
caused by a common phonetic inventory but also because the
languages have some common words in vocabulary and similar
phonotactics, as a wider context is used for identification.

For example, the highest value of errors is between Belaru-
sian and Ukrainian. These languages are more similar to each
other than to Russian as they phonetically differ only in a few
phonemes and they have similar vocabularies. A comparable
case is between Croatian, Serbian and Slovene since the first
two have the same phonetic inventory and Slovene differs from
both of them only in few phonemes. Vocabularies of these lan-
guages are also very similar. Also all west Slavic languages are
confused with each other. However, their phonetic inventories
are not so close, and the source of confusion may be similar
vocabularies and phonotactics.

On the other hand, in some other cases, the confusions are
harder to explain and may lay in the nature of recordings (e.g.,
the source of recordings, acoustic conditions, speaker charac-
teristics) rather than in closeness of the languages. A good ex-
ample is errors between Russian and Polish as Russian is much
closer to other East Slavic languages. Note that some of these
confusions, e.g., Croatian with Czech and Russian occurring for
the baseline i-vector system, diminished with the use of bi-GRU
RNN system.

5. Conclusions

From all the above-stated results, the following conclusions can
be drawn: 1) Bottleneck features are beneficial for all investi-
gated DNN architectures, namely for fully connected networks,
and yielded the lowest error rates in all scenarios. 2) Without
the use of these features, the baseline i-vector based system was
able to outperform systems with fully connected DNNs as well
as CNNs. 3) The best results were obtained by using bidirec-
tional RNNs with GRU units; however, the relative improve-
ment over the same, but unidirectional system, was small. 4)
The evaluation set consisted of recordings no longer than 5 sec-
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onds so that the resulting configuration may be utilized even for
short recordings.

The more detailed analysis of results in the form of con-
fusion matrices further showed that: 1) According to assump-
tions, the worst results were in most cases reached for pairs of
languages that are related to each other and belong to the same
branch of Slavic languages (i.e., they are also difficult to distin-
guish for humans). 2) The most challenging pair for identifica-
tion is Belarusian and Ukrainian (East branch). 3) Other more
difficult groups of languages to distinguish are Czech, Slovak
and Polish (West branch) and Serbian, Croatian and Slovene
(from South branch). 4) The resulting RNN-based system was
able to reduce mistakes for pairs of languages with low as well
as high baseline error rates (i.e., throughout the whole confusion
matrix).
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