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Abstract
This paper investigates how active learning (AL) effects the

training of neural network acoustic models based on Lattice-
free Maximum Mutual Information (LF-MMI) in automatic
speech recognition (ASR). To fully exploit the most informative
examples from fresh datasets, different data selection criterions
based on the heterogeneous neural networks were studied. In
particular, we examined the relationship among the transcrip-
tion cost of human labeling, example informativeness and data
selection criterions for active learning. As a comparison, we
tried both semi-supervised training (SST) and active learning
to improve the acoustic models. Experiments were performed
for both the small-scale and large-scale ASR systems. Experi-
mental results suggested that, our AL scheme can benefit much
more from the fresh data than the SST in reducing the word er-
ror rate (WER). The AL yields 6∼13% relative WER reduction
against the baseline trained on a 4000 hours transcribed dataset,
by only selecting 1.2K hrs informative utterances for human la-
beling via active learning.
Index Terms: active learning, acoustic modeling, heteroge-
neous neural network, speech recognition

1. Introduction
In recent years, the success of acoustic modeling using deep
neural networks (DNNs) in ASR is great. The performances
of ASR systems have been greatly improved. This significant
progress has accelerated the successful applications of ASR
techniques in many industrial services [1, 2, 3]. At the same
time, it also brings new challenges to ASR, because for differ-
ent applications, the data property of users’ speech utterances
may deviate far from the given acoustic models (AMs), either
in the acoustic environments or in the linguistic conditions, etc.
Therefore, in order to improve the performance for each indus-
trial ASR service, it is necessary to update the acoustic model
(AM) constantly using fresh speech data collected from the lat-
est production traffic.

There are two main acoustic modeling techniques to use
fresh data in the ASR community, the semi-supervised training
(SST) [4, 5, 6] and the active learning (AL) [7, 8, 9, 10, 11, 12].
The advantage of SST is the ability of creating automatic tran-
scriptions for a large amount of untranscribed data. However,
these transcriptions may still contain many errors, these errors
are very sensitive to the DNN-based acoustic modeling tech-
niques using discriminative training criterions [5]. Moreover,
the selected fresh data with high confidence tends to have simi-
lar acoustic properties with the ones for seed AM training. Be-
cause all the automatic transcriptions are highly depend on the
seed ASR systems used for decoding. Thus, the SST techniques
are normally useful at the beginning of untranscribed data label-
ing, its gains are rapidly degraded, when the selected homoge-

neous data reaches to some extent, especially for updating the
AMs in some low-resource and large-scale ASR tasks.

Different from SST, the advantage of AL is that, it can guar-
antee the transcription quality of untranscribed data through hu-
man labeling. And we can label any type of speech data with di-
verse acoustic properties. Therefore, it has been receiving much
attentions in the recent ASR literature [9, 10, 11, 12]. However,
creating high quality transcription of speech data manually is
a time-consuming and costly process, it becomes impossible
for a very large amount of data. Therefore, the key challenge
of AL is to select the most informative examples from untran-
scribed fresh data for human labeling with minimum manual
labeling costs. Many studies in AL have been focused on this is-
sue. They are mainly differ in the criterion used for informative
data selection. Such as, the utterance selection using the tradi-
tional confidence measures (CMs) and their variants [7, 11, 13],
the min-max framework [14], the delta-AUC selection approach
[10], and the HMM-state or N-best entropy [9, 15], etc.

In this paper, we focus on a new method to select the in-
formative utterances for AL based on the heterogeneous neural
networks (HNN). In this method, the confidence measures and
a word matching error rate (WMER) are combined together to
form the criterion of data selection. Our idea is inspired by [16],
which is a recent proposed approach used for semi-supervised
training. Effectiveness of the proposed AL will be validated
for the LF-MMI criterion [17] based deep acoustic model train-
ing. In our experiments, different data selection methods for
AL to minimize the human efforts are investigated, and the rela-
tionship among the manual transcription cost, example informa-
tiveness and data selection criterion is also studied particularly.
Furthermore, we compare the AL with SST approach, using the
unified HNN framework, to examine their effectiveness for im-
proving acoustic models. Experimental results indicate that, the
proposed AL scheme can benefit more from the fresh data than
the recent proposed SST, and it still can obtain 6∼13% relative
WER reduction by only required 1.2K hours (hrs) selected in-
formative utterances for human labeling, even the baseline was
already trained on a 4000 hrs large-scale transcribed dataset.

2. HNN-based Active Learning
The scheme of HNN-based AL approach is illustrated in Figure
1. Our target is to improve the deep acoustic model of LTDNN
(Interleaving Time-Delay Neural Network (TDNNs) and unidi-
rectional Long Short-term Memory LSTMs), which has been
proposed in [18] and implemented in Kaldi speech recogni-
tion toolkit [19]. This architecture has been shown to not only
outperforms the state-of-the-art low frame rate (LFR) BLSTM
models, but also computationally more efficient.

As illustrated in Figure 1, given a large amount of un-
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Figure 1: Schematic diagram of HNN-based Active Learning.

transcribed fresh speech utterances (UTFD), we first recognize
them using two ASR systems with HNN acoustic models of
LSTM and TDNN. Then the WMER of each utterance is cal-
culated, by comparing its two decoding hypotheses. The way
to compute WMER is the same as WER, but taking hypotheses
from LSTM as reference instead of the ground truth. Mean-
while, the confidence measure of each utterance is computed.
As observed in [11], using sophisticated confidence measures
did not help to yield any data selection gain, so we choose to
use only the lattices from LSTM ASR system to compute the
CMs. Both CM and WMER are combined to form the criterion
of fresh utterance selection for human labeling, such as, we may
use a criterion of “WMER=[30,40] ⊕ CM=[0, 0.7]”. It means
that, those utterances with WMERs lie in 30% to 40% range and
CM lie in 0 to 0.7 range will be selected as informative exam-
ples for human labeling. Finally, the manually transcribed fresh
data (TFD) and the transcribed base data (TBD) are jointly used
for re-training of the target LTDNN model.

Although the proposed scheme for AL seems very sim-
ple and easy to implement, it proved to be very effective in
our experiments. In our scheme, two points are different from
previous works: 1) We use two HNNs to train the decoding
ASR systems (seed systems) on the whole TBD, instead of us-
ing the same type AMs as target LTDNN model. Such as, the
committee-based works using the same type AMs as target one
to train multiple ASR systems on subsets of TBD dataset in
[20]. Our design is motivated by [16], and its advantage is, it
can alleviate the data homogeneity between the TFD and TBD,
and enhance the generalization ability of the improved target
AM. Because the use of heterogeneous models could bring large
diversity to produce informative and complementary examples.
Furthermore, using the whole TBD can build better HNN mod-
els to reduce the degree of disagreement of those fresh utter-
ances with similar acoustic properties to TBD. 2) We use the
combination of WMER and CM to produce a better measure-
ment of disagreement degree between the recognition results,
because we know that, estimating accurate CM is also very
challenging in ASR literature. Therefore, we expect that, it
could outperform the conventional AL data selection techniques
which depend on only the CM from a single target AM.

3. Experiments
3.1. Datasets

Our experiments are designed to simulate the possible gains ob-
tained by the updated AM, using the proposed AL to achieve
the TFD. For this simulation, we had about 4000 hrs TBD with
Mandarin speech, which was used to train the large-scale ASR
baseline and the seed LSTM and TDNN models for active learn-
ing. In addition, we randomly selected two different 600 hrs
datasets from 4000 hrs. The first 600 hrs was used to build the
small-scale ASR baseline AMs. The second 600 hrs was used
as additional transcribed base data (TBD-add) in experiments in
section 3.3.4.

About 30K hrs untranscribed fresh speech utterances are
collected from the ASR voice search engine of Unisound Cor-
poration (https://www.unisound.com/). These utterances are
considered as UTFD. Three test sets are used to do the system
evaluation, they are about 3 hrs Point-of-Interest speech (POI),
2.5 hrs speech about general voice search topic (GTopic) and 2
hrs Children’s speech (Child).

3.2. Model description

The structure of LSTM acoustic model used here is the fast deep
projected LSTM (LSTMP), recurrent neural network (RNN). It
has 5 LSTM hidden layers, where each has 1024 memory cells,
and the cell outputs were fed into the 256-unit projection lay-
ers. The output label delay was set to 5. The TDNN model is
a 7 layers sub-sampled TDNN with splicing indexes are set to
-2,-1,0,1,2 -1,0,1 -1,0,1 -3,0,3 -3,0,3 -3,0,3 -3,0,3 and the out-
put ReLU dimensions of the weight matrices is set to 1024. Our
target LTDNN model is a mixture architecture of LSTMPs and
sub-sampled TDNNs, using 3 fast-LSTMP layers interleaved
with 7 spliced TDNN layers. For the detail neural network con-
figurations, the reader is directed to [21] for the TDNN-LSTMP
model used for SWBD corpus. Both LSTM and TDNN (seed
models) are trained from 4000 hrs TBD.

We perform phone-level sequence training for all the AMs,
without frame level pretraining, using the LF-MMI training cri-
terion as in [17]. The nnet3 toolkit in Kaldi speech recognition
toolkit [19] is used to perform all the neural network training.
All the AMs in our experiments use the same 80-dimensional
FBANK features, including plus 3-dimensional pitch (raw pitch
and its first and second derivates).

The language model (LM) is the same trigram LM for all
speech decoding. It is trained from 160M words collected from
the TBD and texts from a variety of web search engines.

3.3. Results

Results of two complementary seed models and the target
LTDNN model trained from 4K hrs TBD are presented in Sec-
tion 3.3.1. In Section 3.3.3 to 3.3.4, we validate the pro-
posed AL approach for small-scale ASR, in which the baseline
LTDNN model was trained from the 600 hrs TBD. Then, we
try to generalize observations from these sections to large-scale
ASR task in Section 3.3.5.

3.3.1. Baseline results

Table 1 shows a comparison of three types LF-MMI based mod-
els. The LTDNN results are taken as baseline for system com-
parison. And TDNN and LSTM models are used to decode the
UTFD. It can be seen that the LSTM obtains much better perfor-
mances than TDNN, that’s why we choose automatic transcrip-

2899



tions from LSTM system as reference in Figure 1. Moreover,
the mixture architecture of LTDNN leads to more than 7% rela-
tive improvements. We can see that, these models have different
behaviors on test sets. It indicates that using heterogeneous neu-
ral networks for AL data selection may produce complementary
training examples to the TBD dataset.

In addition, it is clear to obtain that the POI and Child tasks
are much more difficult to recognize than GTopic, by comparing
their WERs across three models. This is due to the fact that, the
TBD provides a much better match of the speech data property
for the general voice search topic than the Point-of-Interest and
children’s speech.

Table 1: WERs% of different systems trained on 4000 hrs TBD.

System GTopic POI Child

TDNN 13.0 16.0 33.5
LSTM 12.6 15.3 32.4
LTDNN 11.9 14.4 31.0

3.3.2. Criterions of utterance selection for HNN-based AL

For reasons of space, we only show a subset of our experiments
for the examination of criterions for utterance selection, which
were very extensive. From these tryout experiments, we found
that those utterances in the UTFD pool with WMERs > 50%,
are extremely difficult to be accurately labeled by human, and
those utterances with WMERs < 20% are less informative.
Therefore, to balance the human labeling costs and informa-
tiveness of the selected UTFD, in Table 2, we tried four differ-
ent combination ways of the CM and WMER statistics to form
the criterion for AL utterance selection (indicated using ⊕).

Table 2: Evaluation of different criterion for data selection.
WMER refers to the value of WMER%.

CM ⊕WMER hrs/RL WER%
GTopic POI Child

LTDNN (600 hrs) - 13.0 16.5 33.2
[0, 0.7]⊕ [20, 30] 322/0.88 12.6 14.5 31.7
(0.7, 0.8]⊕ [20, 30] 477/0.92 12.4 16.1 33.0
[0.8, 0.9]⊕ [30, 40] 375/0.91 12.6 14.8 31.6
[0.8, 0.9]⊕ [40, 50] 226/0.88 12.5 14.2 31.5

Numbers in the 2nd column of Table 2 give the total hours
of selected UTFD utterances (indicated using hrs) and the ra-
tio of these utterances successfully labeled by human (indicated
using RL), using different data selection criterions. Such as,
for the CM= [0, 0.7]⊕ WMER= [20, 30], 322 hrs utterances
are selected, but with only 322 ∗ 0.88 = 283.36 hrs can be
successfully labeled by human as TFD. These numbers indicate
that the harder to be recognized by ASR systems of these se-
lected UTFD utterances, the more difficult to be transcribed of
them by human, and we need to pay higher manual transcription
costs for them.

Furthermore, we select 100 hrs randomly from the TFD un-
der each CM ⊕ WMER criterion separately. The right part of
Table 2 shows the performances of LTDNNs trained from the
joint 600 hrs TBD and each 100 hrs TFD. It can be seen that,
comparing rows 2,4,5 with 3, the selected utterances using cri-
terion in row 3 are much less informative than others. In ad-

dition, from rows 2,4,5, we can see that the relative gains are
smaller for GTopic(3∼3.8%), compared with the ones for POI
(10∼14%), and Child (5∼7%). Compared with the baseline,
all the significant WER improvements derived from these three
rows proved the effectiveness of the proposed AL scheme. Con-
sidering both observations from the left and right part of Table
2, we can conclude that, the degree of TFD informativeness is
proportional to the difficulty of manual labeling. That’s to say,
we need to pay a higher transcription cost to get the more in-
formative TFD. Therefore, we choose to use the first and last
two criterions in Table 2 for all the fresh data selection, and we
obtained about 823 hrs TFD from the total 30K hrs UTFD.

3.3.3. Comparing different methods for AL data selection

Figure 2: Performance comparison on POI test set using differ-
ent AL data selection methods.

Figure 2 compares three techniques of UTFD data selection
on POI test set: unfiltered random selection (RS), confidence
filtering with CM=[0, 0.9], and the proposed CM ⊕ WMER.
The baseline is the same LTDNN trained from 600 hrs TBD, as
shown in Table 2. We found that there was around 36% of ut-
terances with a confidence measure lower than 0.9, it was much
higher than the data ratio of selected UTFD in the total 30K
hrs. All the selected datasets in this figure were the ones suc-
cessfully labeled by human. For CM ⊕ WMER, the 100, 200
and 300 hrs were randomly selected from the total 823 hrs TFD
which was obtained in Table 2. It can be seen that the com-
bination criterion of CM ⊕ WMER leads to above relative 6%
WER improvements over the conventional data selection only
using CM, and even larger gains are obtained over the RS.

3.3.4. Comparing effectiveness of TFD and TBD

It is interesting to perform experiments to improve the LTDNN
AMs, by adding the TFD and TBD-add data to the baseline
600 hrs TBD as training examples. Additional 100 and 600
hrs were randomly selected from the 823 hrs TFD, TBD-add
datasets were tried in the experiments. Figure 3 demonstrates
the comparison of relative WER reductions (WERRs) obtained
from the improved AMs, compared with the ones of LTDNN
baseline.

From Figure 3, it is clear to see that by adding the same
amount of 100 or 600 hrs data to the baseline, the TFD can pro-
vide much bigger performance gains over the TBD-add, espe-
cially for the POI test set which may reflect users’ actual needs
from the ASR engine. In fact, to meet the industrial application
needs, the TBD was usually well designed in advance to build
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Figure 3: Performance comparison of the LTDNN systems. The
AMs were separately trained using the joint datasets of baseline
600 hrs TBD and TBD-add, TFD. WERR refers to the relative
WER reduction.

the baseline ASR system. However, for those applications as
voice search, the rapid change of users’ activities can result in
extremely diverse data properties of test speech, such as new
POI words, audio recording conditions or background acous-
tics, etc. It is impossible to design a TBD to fully cover every
case and all these new factors. Therefore, It is indeed neces-
sary to develop an efficient AL or semi-supervised approach to
overcome new challenges.

3.3.5. AL vs SST for large-scale LTDNN training

To validate the generalization ability of the proposed AL
scheme from small-scale to large-scale ASR tasks, we per-
formed an initial experiment of large-scale active learning for
LTDNN training, and compared it with the SST training based
on the same heterogeneous neural networks. We increased the
30K hrs UTFD utterances to 100K hrs from the voice search
engine for both large-scale SST and AL.

The baseline LTDNN was trained from the whole 4K hrs
TBD. The SST approach is similar to [16], and its HNN models
are the same two ones used for our AL, except using the crite-
rion of WMER=0 ⊕ CM=[0.6, 0.95] to do the automatic selec-
tion of UTFD utterances and their corresponding transcriptions
(the best utterance selection criterion we have tried). The same
AL data selection criterion as in Section 3.3.2 to obtain the 823
hrs from the 30K hrs UTFD is directly applied for the 100K hrs
UTFD.

Table 3: Performance of large-scale LTDNN acoustic model
training with different amount of training data from the SST and
proposed AL based on heterogeneous neural networks.

Method Data size WER%
GTopic POI Child

Baseline 4K hrs (TBD) 11.9 14.4 31.0
SST +7K hrs 11.4 13.4 29.4
AL +1.2K hrs 11.2 12.5 28.1
SST+ AL +8.2K hrs 10.9 12.1 27.5

It is surprising to find that, we obtained about 7K hrs utter-

ances with high confidence automatic transcriptions from SST,
however, only around 3% utterances (around 3K hrs) were fi-
nally selected using the proposed AL approach, because the
HNN models were already well trained using the 4K hrs TBD.
Due to the high manual labeling cost, we only labeled 1.2K hrs
selected UTFD as the TFD and added it to the 4K hrs baseline.
It indicates that the manual transcription cost can be greatly re-
duced, when we compare the proposed data selection of AL
with the random selection and the one only based on the CM as
shown in Section 3.3.3. It is specially useful for very large-scale
ASR tasks.

Table 3 shows the performances of LTDNN models trained
from different large-scale datasets. Comparing the WERs of 1st
row in Table 2 and the ones in Table 3, it can be seen that the
large-scale LTDNN baseline was significantly improved. About
relative 6∼12% WER reductions have been achieved on three
evaluation sets. Comparing the first two rows in Table 3, it
can be seen that when adding 7K hrs data from SST to the 4K
hrs baseline, only around 4∼7% performance gains have been
achieved. However, we can obtain relative 6∼13% WER gains
by only adding 1.2K hrs TFD from AL. It indicates that, the
training data size is greatly increased by the SST, but the com-
plementary information it brings is limited, the TFD utterances
selected by AL are more informative than the ones collected by
SST, even for the large-scale ASR task. Furthermore, when we
combined the utterances derived from SST and AL, and added
them into the 4K hrs TBD, the retrained LTDNN was further
improved. In addition, when we compare the improvements on
GTopic with the ones on POI and Child, it can be seen that the
proposed AL is very useful to improve the acoustic models for
challenging evaluation tasks.

4. Conclusion and Future work
In this paper we applied ideas from recent semi-supervised
training approach [16] to active learning of LF-MMI trained
LTDNN acoustic models, using heterogeneous neural networks
to select informative utterances. We used a combination of
WMER and CM to form the data selection criterion, and ex-
perimental results proved that it outperforms the conventional
CM and RS data selection significantly. We showed that the
AL works very well in both small and large-scale ASR tasks. It
still can produce 6∼13% relative improvements by only label-
ing 1.2% utterances from 100K hrs fresh data, even the baseline
was already well trained from 4K hrs TBD. Furthermore, we
performed the HNN-based SST and AL in an unified frame-
work, using the same types of HNN models to do the fresh data
decoding. Initial results showed that combing AL and SST can
lead to further improvements. We guess that, if the HNN mod-
els used for AL data selection could be further improved, it can
result in bigger reduction of the manual transcription cost and
produce more useful data for improving AMs. We are currently
investigating this observation on variety ASR tasks. The effects
of AL to language model training is also our future work.
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