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Abstract
This paper investigates how forward and backward attentions
can be integrated to improve the performance of attention-based
sequence-to-sequence (seq2seq) speech recognition systems. In
the proposed approach, speech is decoded from left to right as
well as from right to left utilizing forward and backward atten-
tion vectors, and the best sentence hypothesis is searched for ac-
cording to combined probabilities provided by the decoders of
two directions. Our method takes advantage of two distinct and
complementary ways of extracting information from the asym-
metric time structure of speech. It also mitigates a drawback
of attention-based models that they tend to output less reliable
labels due to error accumulation when the utterance becomes
longer. We also show the effectiveness of a multitask learn-
ing in which the forward decoder is jointly trained with back-
ward decoding sharing a single encoder. The proposed forward-
backward decoding improved word error rates (WERs) of word-
level attention models by up to 12.7 % relative in speech recog-
nition experiments using large-scale spontaneous speech cor-
pora. They achieve much higher performances than a state-of-
the-art hybrid DNN-HMM system while retaining the advan-
tage of very low latency.
Index Terms: Sequence-to-sequence speech recognition, at-
tention, acoustic-to-word models, forward-backward decoding,
multitask learning

1. Introduction
Deep learning-based hybrid acoustic models have drastically
improved the performance of automatic speech recognition
(ASR) [1]. It was recently reported that even a human-level
recognition performance can be achievable when the hybrid
models are coupled with bidirectional LSTMs and very deep
convolutional networks with residual connections [2][3]. How-
ever, in exchange for these excellent performances, these ASR
systems have very complicated structures consisting of com-
plex decoders, large language models, and carefully designed
pronunciation dictionaries. They have a large runtime latency
and less portability.

On the other hand, we have seen the rapid development
of an alternative sequence-to-sequence (seq2seq) approaches
to speech recognition using connectionist temporal classifica-
tion (CTC) [4][5][6][7], attention-based encoder-decoder mod-
els [8][9][10][11] or RNN-transducers [12][13]. Their remark-
able advantage is that they get rid of dependency on frame-
level probabilistic state transition models such as HMMs. An
extreme example of the seq2seq approach is acoustic-to-word
models [14][15][16] which directly map acoustic signals into
word sequences. They do not require any external decoders or
language models, leading to an extremely simplified architec-
ture of ASR systems and very low latency. Outputting words
rather than phones or characters is also an essential requirement

for subsequent natural language processing such as dialogue,
translation and information query.

We have shown in [16] that attention-based models which
explicitly incorporate label transition probabilities are signifi-
cantly better than CTC-based models for word-level seq2seq
speech recognition. In this paper, we further seek to improve
the attention-based speech recognition system. Specifically, we
look at attending the encoded feature stream from right to left
as well as left to right, and investigate how this backward at-
tention can be utilized together with the usual forward attention
to improve the performance of attention-based models. In the
proposed approach, speech is decoded from right to left as well
as from left to right utilizing forward and backward attention
vectors, and the best sentence hypothesis is searched for based
on combined probabilities provided by the decoders for two di-
rections. We also propose a multitask learning in which the for-
ward decoder is trained with a subtask of backward decoding
sharing a single encoder and vice versa, aiming at a regular-
ization effect of encoder optimization for both directions. We
demonstrate that acoustic-to-word attention-based models en-
hanced with the proposed approach achieve much higher perfor-
mances than a state-of-the-art hybrid DNN-HMM system with
a decoding speed faster by a factor of 50 through speech recog-
nition experiments using large-scale spontaneous Japanese cor-
pora.

2. Attention-based speech recognition
This section presents a brief review on attention-based seq2seq
speech recognition, including a decoding algorithm based on
beam search. In attention-based speech recognition, we model
seq2seq mapping between speech and label sequences using an
encoder-decoder architecture [8][9]. This architecture has two
distinct sub-networks. One is the encoder which transforms
an acoustic feature sequence to a sequential representation of
length T . Based on this encoded acoustic information, the other
decoder sub-network predicts a label sequence whose length L
is usually shorter than the input length T . The decoder uses
only a relevant portion of the encoded sequential representation
for predicting a label at each time step using the attention mech-
anism. The encoder is implemented as multi-layer bidirectional
RNN such as LSTM [17], and the decoder usually consists of
a single layer of unidirectional LSTM followed by a softmax
output layer.

The attention-based models are formulated as follows. The
encoder transforms input acoustic features X = (x1, ..., xT )
to a sequential representation H = (h1, ..., hT ) that summa-
rizes the characteristics of the input. In the following decoding
step, the hidden state activation of the RNN-based decoder at
the l-th time step is computed as:

rl = Recurrency
(
rl−1, gl, yl−1

)
, (1)
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Algorithm 1 ForwardBeamSearch(N, X)

1: F : set of completed label sequences
2: NewSeqs : set of label sequences at current output time
3: Seqs : set of label sequences up to the last output time
4: F ⇐ {∅}, score(⟨sos⟩) = 0, Seqs ⇐ {(⟨sos⟩)}
5: w ⇐ N
6: while w > 0 do
7: NewSeqs ⇐ {∅}
8: for sequence s ∈ Seqs do
9: B ⇐ The w best words in terms of p(y|s, X)

10: for word y ∈ B do
11: s+ ⇐ concat(s, y)
12: score(s+) = score(s) + log(p(y|s, X))
13: if y = ⟨eos⟩ then
14: add s+ to F
15: w ⇐ w − 1
16: else
17: add s+ to NewSeqs
18: end if
19: end for
20: end for
21: Seqs ⇐ The w best sequences in NewSeqs in terms of

score(s+)
22: end while
23: return set of sentence candidates F

where gl and yl−1 denote the ”glimpse” at the l-th time step
and the predicted label at the previous step, respectively. The
glimpse gl is a weighted sum of the encoder output sequence
as:

gl =
∑

t

αl,tht, (2)

where αl,t is an attention weight of ht. It is calculated as:

el,t = Score(rt−1, ht, αl−1), (3)

αl,t = exp(el,t)/

T∑

t′=1

exp(el,t′). (4)

There are many choices for implementation of the score
function (4). In this paper, we adopt the hybrid location and
content-based attention mechanism [9] as follows:

el,t = wT tanh(Wrt−1 + V ht + Uf l,t + b), (5)
f l = F ∗ αl−1, (6)

where ∗ denotes 1-dimensional convolution. Using gl and rl−1,
the decoder predicts the next label yl as:

yl ∼ Generate (rl−1, gl) , (7)

where the Generate function is implemented as:

R tanh (Prl−1 + Qgl) . (8)

The objective for training the attention models is a cross
entropy loss calculated between the predicted label sequences
and the target label sequences.

A runtime decoding algorithm for word-level attention-
based models is presented in Algorithm 1. This algorithm re-
turns the N -best sentence candidates using a decreasing beam
width initialized with N . It is simple since we do not need
to incorporate external dictionaries or language models. ⟨sos⟩
and ⟨eos⟩ are special symbols for the start and end of a sen-
tence. The posterior probability of a word at each decoding step
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Figure 1: Normalized occurrence counts of substitution errors
at different relative positions of utterances in CSJ-TESTSET1

p(y|s, X) on line 9 and 12 is calculated using formulas from
(1) to (8). After performing Algorithm 1, we rescore each sen-
tence candidate s in F using an insertion penalty λ as follows:

rescore(s) = score(s) − λ|s|, (9)

where |s| is the length of sequence s, and score(s) is the value
calculated on line 12 of Algorithm 1. We output the sentence
with the largest rescore(s).

A backward decoder for right-to-left decoding and its en-
coder network can be trained in the same way as a forward de-
coder, with an exception that it takes flipped versions of acous-
tic features and labels as input and target, respectively. In the
runtime of backward decoding, ⟨sos⟩ and ⟨eos⟩ are swapped in
Algorithm 1 correspondingly.

3. Forward-backward attention
Here, we describe in depth the proposed method that integrate
forward and backward attentions. This approach is motivated
by the following two considerations.

First, attention-based encoder-decoder models are gener-
ally not good at decoding long utterances as mentioned in [9].
They tend to output less reliable labels in the latter part of ut-
terances due to error accumulation. Figure 1 shows how many
substitution errors word-level forward and backward decoders
made at different relative positions of utterances in a Japanese
speech recognition experiment 1. In this figure, the forward de-
coder made more errors than the backward counterpart in the
later part of utterances, while we observe an opposite tendency
in the earlier part. This shows that unidirectional decoders tend
to be more accurate at their early decoding steps, which leads
to a strategy that concatenates reliable parts of sequences ob-
tained from two directional decoders. These newly generated
hypotheses can have fewer errors than the original ones, if this
concatenation process is managed in an appropriate way.

Second, because speech has an asymmetric time structure,
forward and backward decoders may have strengths in differ-
ent ways which may contribute to better accuracy complemen-
tarily. Therefore, we expect a performance gain from simply
combining their recognition results, considering the consistent
effectiveness of the system combination approaches [18][19] in
many ASR tasks such as noisy speech recognition [20].

3.1. Decoding

We propose a 3-pass decoding algorithm utilizing forward
and backward attention decoders which do not undermine the

1This is the same experiment as shown in the first column of Table 1.
The mean and standard deviation of utterance length are 5.6s and 3.9s.
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Algorithm 2 ForwardBackwardBeamSearch(N, X)

1: F f ⇐ ForwardBeamSearch(N, X)
2: F b ⇐ BackwardBeamSearch(N, flip(X))
3: F ⇐ {∅}
4: for sf ∈ F f , sb ∈ F b do
5: j next = |sb|
6: for i in 1,...,|sf | do
7: for j in j next,...,1 do
8: if sf

i = sb
j and time(sf

i ) ∼ time(sb
j) then

9: s∗ ⇐ concat(sf
<=i, f lip(sb

<j))

10: score(s∗) = scoref (sf
<i) + scoreb(sb

<j) +

log(max(pf (sf
i |sf

<i, X), pb(sb
j |sb

<j , f lip(X)))
11: add s∗ to F
12: j next = j − 1
13: break
14: end if
15: end for
16: end for
17: end for
18: return set of sentence candidates F

low-latency advantage of word-level models. We summa-
rize it in Algorithm 2. It was inspired by decoding methods
for HMM acoustic models based on forward-backward search
[21][22][23]. Pass 1 performs left-to-right decoding using the
forward decoder. In Pass 2, speech is decoded from right to left
using the backward decoder taking flipped acoustic features,
which we denote as flip(X) in Algorithm 2, as input. Pass
3 integrates the sentence hypotheses from Pass 1 and Pass 2
and generates new candidates by concatenating the partial sen-
tences.

The key points for this algorithm are (1) how to find the
partial sequences to be concatenated from hypotheses obtained
with the two decoders, and (2) how to give reliable scores to
the newly generated sentence candidates. As for the first issue,
we first pick up two sentence hypotheses which share the same
word appearing at approximately the same time frame. We then
split each of these two sentence hypotheses at this word and
concatenate the earlier half of the forward hypothesis and the
later half of the backward hypothesis to generate a new sentence
hypothesis.

More precisely, we judge that the i-th word sf
i in a forward

sentence candidate sf and the j-th word sb
j in a backward can-

didate sb appear at an approximately same time frame (which
we denote time(sf

i ) ∼ time(sb
j)), if the following condition is

met:
time(sb

j+1) < time(sf
i ) < time(sb

j−1), (10)

where we define the occurrence time of words using forward
and backward attention vectors as:

time(sf
i )

def
= arg max(αf

i ), (11)

time(sb
j)

def
= T − arg max(αb

j), (12)

where T is the frame length of the input speech. αf
i and αb

j are
the forward attention vector at the i-th forward decoding step
and the backward attention vector at the j-th backward decod-
ing step, respectively. This is a natural choice because attention
vectors have their maximum values around the center frame of
the corresponding words in most cases.

The generation process of new sentence candidates is as
follows. From any pair of forward and backward sentence hy-
potheses, we pick pairs of words whose occurrence time are

potentially similar based on their positions in hypotheses. We
examine if the condition given in equation (10) is true for the
word pair and if these word labels are the same. If sf

i and sb
j

satisfy the conditions, we generate a new sentence candidate s∗

as:

s∗ = concat(sf
<=i, f lip(sb

<j)), (13)

where sf
<=i is a partial sequence beginning from ⟨sos⟩ and end-

ing at the i-th word of the original forward hypothesis, and sf
<j

is a partial sequence beginning from ⟨eos⟩ and ending at the
(j − 1)-th word of the original backward hypothesis2. Because
these two partial sentences end at the same word appearing at an
approximately same time frame, the score for this concatenated
sequence s∗ is defined as:

score(s∗) = scoref (sf
<i) + scoreb(sb

<j) +

log(max(pf (sf
i |sf

<i, X), pb(sb
j |sb

<j , f lip(X))). (14)

Note that the double loop from line 6 to 16 runs in O(L)
time where L is the length of the longest sentence candidate
of F f and F b, since we only need to check the pairs of words
from sf

>i and sb
<j after we confirm that sf

i and sb
j satisfy the

condition on line 8. After all candidates are generated, we
rescore them using a formula (9) and output the sentence with
the largest score.

3.2. Multitask learning of decoders

We also propose to integrate the forward and backward atten-
tions in the training stage of decoders. This is implemented as a
multitask learning (MTL) framework, in which the forward and
backward decoders are trained sharing a single encoder. We
aim to regularize the optimization process of one decoder using
the loss of the other decoder. The loss function for MTL of the
forward decoder is defined as:

loss
(MTL)
f = α · lossf + (1 − α) · lossb, (15)

where lossf and lossb are the original cross-entropy loss func-
tions of the forward and backward decoders, respectively. α is
the weight for the main task, which may be set to be larger than
0.5. The shared encoder is trained so that the encoded acoustic
representation is expected to be suitable for both of left-to-right
and right-to-left decoding.

4. Experimental evaluations
We evaluated our methods through speech recognition tasks us-
ing the Corpus of Spontaneous Japanese (CSJ) [24]. CSJ in-
cludes two distinct subcorpora, namely, CSJ-APS and CSJ-SPS.
CSJ-APS consists of academic presentation speeches on several
topics such as science, engineering, humanities and social sci-
ence. CSJ-SPS consists of simulated presentation speeches on
three general themes. These subsets have their own official test
sets, namely, CSJ-TESTSET1 and CSJ-TESTSET3.

A 40-dimensional vector consisting of 40-channel log Mel-
scale filterbank (lmfb) outputs is used as acoustic features for
attention models. Non-overlapping frame stacking [6] was ap-
plied to these features in which we stack and skip three frames
to make a new super frame. The acoustic encoders in our atten-
tion models consist of 3 or 5-layers of bidirectional LSTMs with

2This algorithm guarantees that sentences identical to original can-
didates are also generated due to the existence of ⟨sos⟩ and ⟨eos⟩.
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Table 1: ASR performance for two tasks (WER(%))

CSJ-APS (224 hrs) CSJ-SPS (251 hrs)
decoder CSJ-TESTSET1 CSJ-TESTSET3

forward (baseline) 14.51 11.41
+ MTL 14.27 11.21

backward 13.82 11.57
+ MTL 13.58 11.26

forward-backward 12.92 10.38
+ MTL 12.67 10.24

Table 2: Recognition error rates of different types for CSJ-
TESTSET1 (%)

error type

decoder del sub ins total

forward 2.24 9.67 2.60 14.51
+ MTL 2.28 9.71 2.27 14.27

backward 2.47 9.37 1.99 13.82
+ MTL 2.41 9.31 1.86 13.58

forward-backward 2.36 8.70 1.86 12.92
+ MTL 2.24 8.71 1.70 12.67

320 cells. Dropout [25] was used for training each LSTM layer
with a dropout rate of 0.2. The decoder consists of a 1-layer
LSTM with 320 cells and a softmax output layer with the nodes
for vocabulary words, ⟨sos⟩, ⟨eos⟩ and ⟨UNK⟩ special token
for out-of-vocabulary words. The sizes of word vocabularies
for CSJ-APS and CSJ-SPS are 19,146 and 24,826, respectively.
We used Adam [26] for optimizing network parameters. We
also used gradient clipping with a threshold of 5.0. All network
parameters were initialized with random values drawn from a
uniform distribution with range (-0.1, 0.1). The input data are
sorted by the length of frames before creating minibatches of
30 sentences. While we used Chainer toolkit [27] to train the
networks with a 3-layer encoder, we used Pytorch [28] for the
larger models with a 5-layer encoder exploiting its advantage
of memory efficiency. All experiments were carried out on a
system with a 3.60 GHz Intel Xeon and a NVIDIA TITAN X.

4.1. Results with small models

First, we show the results of a number of comparative experi-
ments using smaller models with a 3-layer encoder. The beam
width N was set to be 4 in all experiments which gave the low-
est WERs. Table. 1 shows the word error rates (WERs) ob-
tained for two tasks. By comparing the results against the base-
line forward and backward decoders, we can find the proposed
forward-backward decoder achieves significant improvement in
both tasks. Our MTL method yielded small but consistent im-
provements for all types of decoders. We set the weight α in
the MTL to be 0.8. The proposed forward-backward decod-
ing combined with the MTL improved WERs of word-attention
models by 12.7 % and 10.3 % relative for CSJ-TESTSET1 and
CSJ-TESTSET3, respectively.

We show the error rates of different types (deletion, sub-
stitution and insertion) separately in Table 2 in order to inves-
tigate in depth the reason for the performance gains from our
methods. From this table, we understand that the MTL mainly
contributes in reducing insertion errors. On the other hand, the
forward-backward decoding improved substitution error rates
significantly, in addition to reducing deletion and insertion er-

Table 3: ASR performance and real time factor (RTF) of pro-
posed method implemented and evaluated with larger models
trained using larger data for CSJ-TESTSET1

model WER(%) RTF

DNN-HMM + LM 13.62 0.925
phone-CTC + LM 14.15 0.581

forward N=4 11.27 0.057
N=2 11.36 0.020
N=1 11.87 0.010

forward-backward N=4 10.17 0.119
N=2 10.09 0.040
N=1 10.17 0.019

rors to the level of the lower rate of either decoder.

4.2. Results with large models

Here, we present the results using larger models with a 5-
layer encoder which have much higher baseline performances.
These models were trained using both of CSJ-APS and CSJ-
SPS. The vocabulary size was increased to 34,331 accordingly.
We also used scheduled sampling [29] and label smoothing [30]
to improve the optimization. A hybrid DNN-HMM model and
a phone CTC model were also build using the same training
set for comparing their ASR performances and real time fac-
tors against our attention-based word models. The DNN-HMM
model has seven hidden layers with 2k rectified linear units (Re-
LUs) and a softmax output layer with 3k nodes. The CTC-based
model has 5 layers of bidirectional LSTM with 320 memory
cells. For decoding with the hybrid DNN-HMM and the phone
CTC, we used the Julius decoder [23] and the EESEN WFST
decoder [31], respectively.

The WERs and real time factors (RTF) for CSJ-TESTSET1
are shown in Table 3. We also show the results with narrower
beam widths than 4 for attention models. The proposed method
yielded a further significant performance gain (9.8 % relative)
on top of the better baseline model when the beam width was
4. It only took exactly twice as long time as the forward de-
coder for completing recognition, showing that the Pass 3 in
Algorithm 2 required only a negligible time as expected. Inter-
estingly, the proposed method is not affected by a narrow beam
width, while the performance of the forward decoder degraded
as the beam width became narrower. The results with N = 1
show that our algorithm can recover many correct words from
only single pair of candidates from two decoders, which the
conventional unidirectional decoder can never find even with a
wide beam width. The proposed method with N = 1 achieved
a WER reduction of 25.3 % relative from the DNN-HMM cou-
pled with a trigram language model with a decoding speed faster
by a factor of 50.

5. Conclusion
We have proposed an effective decoding method by integrating
forward and backward attentions for attention-based seq2seq
models. The acoustic-to-word model enhanced with the pro-
posed method achieved a WER reduction of 25.3 % relative
from a standard hybrid DNN-HMM system with a decoding
speed faster by a factor of 50. As future work, we are also
interested in constructing an algorithm based on earlier integra-
tion of forward and backward decoding as in algorithms based
on best-first search [22][23].
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