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Abstract

Word emphasis prediction is an important part of expressive
prosody generation in modern Text-To-Speech (TTS) systems.
We present a method for predicting emphasized words for ex-
pressive TTS, based on a Deep Neural Network (DNN). We
show that the presented method outperforms machine learning
methods based on hand-crafted features in terms of objective
metrics such as precision and recall. Using a listening test, we
further demonstrate that the contribution of the predicted em-
phasized words to the expressiveness of the synthesized speech
is subjectively perceivable.

Index Terms: word emphasis, speech synthesis, expressive text
to speech, prosody, deep learning

1. Introduction

Generating natural and expressive prosody is considered to be
one of the most important challenges in Text-To-Speech (TTS)
systems. There are numerous perceptually distinct prosodic
realizations of the same input text. The prosody determines
the emotional state and attitude of speakers and helps bring
clear messages to listeners by distinguishing the more impor-
tant speech portions. The latter is usually realized by means of
word emphasis [1].

Word emphasis patterns are speaker- and domain-specific.
The word emphasis is either applied deliberately to convey a
certain speaking style or used pragmatically to focus attention
on particular words or the ideas associated with them. Doing
so can clarify or even modify the meaning of a sentence. The
mixed nature of word emphasis makes its prediction a challeng-
ing task that relies heavily on a reliably annotated and consistent
voice corpus.

In this work, we explore the usability of fully automatic
word emphasis prediction for expressive TTS system, when
used to generate persuasive speech for an audience. Two capa-
bilities are required for such a system. First, the system needs a
prediction module that marks emphasized words within a text.
Second, it must have the capabilities to realize that word em-
phasis. In this paper, we focus on the word emphasis predic-
tion module. This module can be integrated in word-emphasis-
enabled TTS systems such as [2, 3] to achieve a fully automated
TTS system with emphasized words.

Emphasized words in speech can be used in two different
scenarios: i) detection from spoken data and ii) prediction for
TTS. While the former can exploit both acoustic and textual
features [4, 5, 6], the latter can only use textual features. In
general, word emphasis prediction models are rule-based [7] or
trained on hand-crafted features using classic machine learn-
ing (ML) approaches [8]. In this work, we propose harness-
ing the power of Deep Neural Networks (DNN) for predicting
emphasized words. Our network uses a combination of fully
connected layers and a Recurrent Neural Network (RNN) with
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Bidirectional Long Short-Term Memory (BiLSTM) [9].

One of the difficulties in training a DNN lies in collecting
large amounts of labeled data. Unfortunately, there are currently
no available datasets for the discussed task. Although several
resources with TOnes and Breaks (ToBI) labeling [10] are avail-
able, this data cannot be translated directly to emphasized word
labels [11]. In [7, 8], the authors used a relatively small propri-
etary dataset comprising less than total of 6,500 words. with
word emphasis labeling.

We describe a larger labeled dataset that we created for
training a DNN. The dataset contains about 20 hours of
recorded data, which represent 9,461 sentences with a total
of 168,409 words. Each sentence was annotated for word-
emphasis binary labels by 4 professional labelers. We trained
and tested a DNN on the labeled data using k-fold cross vali-
dation, and demonstrate that it outperforms a classic ML tech-
nique with hand-crafted features. To further enhance research
in this domain, we release a subset of the dataset on the IBM
Debater Datasets webpage '.

To verify the effectiveness of the model, we performed a
subjective listening test [12] by creating a test dataset with 50
random sentences, to which we applied our model for predicting
emphasized words. We then used the TTS system of [2] to syn-
thesize the sentences, once without emphasized words and once
with the predicted emphasized words. We report the results of
this listening test and show that the spoken data with empha-
sized words was significantly better in terms of expressiveness,
while maintaining the naturalness of the original TTS.

To summarize, the contributions of the paper are the fol-
lowing. First, a DNN based model for predicting emphasized
words from text. Second, a large speech corpora, labeled for
emphasized words, and third, an expressive TTS system with
prosody generation for emphasized words.

2. Related Work

Most previous work that detect emphasized words, are based on
acoustic and prosodic features that exist in spoken data [4, 5, 6].
Our focus in this paper is different. We develop a model for
predicting emphasized words from text, thus we can use text-
based features only.

There are relatively few previous works that predict em-
phasized words. In one, the authors present a rule-based ap-
proach [7]. In another [8], a ML classifier is used. To predict
emphasized words, the classifier uses text-based features such
as part-of-speech (POS), information content, and position in
the sentence. Strom et al. [12] proposed using a simple pitch
accent predictor based on the ratio between the number of times
a word was pitch-accented in some large labeled corpus, and the
total number of its appearances in the corpus. We show that our
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method, which is based on DNN with word embedding [13],
outperforms approaches that are based on the above-mentioned
features.

Some of the other works cited here [14, 15] also use DNN,
but they use the technique for detecting emphasized words in
spoken data, and not for prediction.

Obtaining labeled data of emphasized words for training a
model is subjective, error prone, and labor intensive. Usually,
several labelers are required to increase the annotation reliabil-
ity. For example, three labelers annotated a corpus of 6,434
words with syllable prominence in [7]. The word emphasis was
then derived by taking the maximum syllable prominence in
each word. Another smaller-scale emphasis prediction work [8]
is based on an annotated corpus of four childrens stories (with
a total of 2,906 words), using just one labeler. In that work, the
labels included pitch accents, while the emphasized words were
determined by some heuristics on the pitch accents of the word
and its neighbors.

As opposed to the cited prior art, we used a much larger
dataset with 168,409 words, fully annotated by four distinct la-
belers.

3. Word Emphasis Prediction

The proposed architecture (Figure 1) receives a batch of
sentences as input and processes each sentence as follows.

The Word Embedding Layer extracts a feature vector for each
word using a word embedding matrix. We use the Google’s
pre-trained w2v [13] that represents the semantic meaning of
the words. The pre-trained matrix allows us to benefit from
training on a very large unlabeled data set.

The Fully Connected (FC) Layer translates the original
word embeddings into new representations to better fit the
task at hand. It applies a linear transformation to the word
embeddings, followed by tanh as a non-linear activation
function.

The Bidirectional RNN Layer captures the context of each
word when predicting whether it should be emphasized.
Clearly, emphasizing a word depends on its context [16].
We use LSTM [9] to capture the consecutive elements in a
sequence (in our case, words in a sentence). The learned
representation of each word is dependent on the elements that
precede it. To capture subsequent words, we use bidirectional
LSTM (BiLSTM). As a result, the output of this layer captures
the meaning of each word together with its relevant context.

The Prediction Layer is a fully-connected layer used to
translate the representation computed in previous layers into
a probability score that represents the probability of the word
being emphasized. This is done by computing the sigmoid
on the inner product between a learned weight vector 5; and
the output of the previous layer x plus a bias term. Namely,

sigmoid(Biz + Bo).
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Figure 1: Model architecture
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The network can be trained on an annotated voice corpus
with binary word emphasis labels attached to each word (i.e.,
the emphasized words are labeled with 1, and the rest with 0).
The labeled data that we used is described in Section 5 below.
The loss function is defined as the weighted cross entropy be-
tween the predictions and the actual labels.

loss = Z [label, - (—log(predictions)) - pw +

rzeX

(1 —labely) - (—log(1 — predictiong))] (1)
where X represents all words in all training sentences and the
hyperparameter pw is used as a weight for compensating the
positive (i.e., emphasized) words, due to their unbalanced ratio
among all words (see Table 1). Another method for handling
unbalanced data is to apply over/under sampling in the training
set and fix the prediction bias [17] as we did in Section 6 for the
Logistic Regression classifier (Equation 3). However, since our
DNN model depends on context, it is not feasible to over/under
sample words inside a sentence.

Once the model is trained, it can be used for predicting em-
phasized words in a new sentence as follows. A sentence is
fed into the network, which outputs a prediction value for each
word, as described above. All words with prediction > 0.5
are then defined as emphasized words. More details on the net-
work and the selection of the hyper-parameters (e.g., sizes of
each layer) are given in Section 6 below.

4. Prosody Generation

The predicted emphasized words are given as input to a speech-
synthesis engine. In this work we use the IBM concatenative
unit-selection system [2, 18] which is adapted to utilize the pre-
dicted emphasized words.

The engine generates word-emphasis prosody using two
stacked BiLSTM networks. The first one generates a generic
fine-grained prosody at sub-phonemic resolution. The sec-
ond one generates a rough piecewise linear prosodic trajec-
tory at syllable resolution to realize the word emphasis, aug-
menting the generic sub-phonemic prosody model [2]. The
predicted prosody targets serve both for unit selection and for
post-selection signal modification by Pitch-Synchronous Over-
lap and Add (PSOLA) [18].

The control of word-emphasis strength in the system is en-
abled by adopting a special data normalization technique [2].
During the training, a moving average is extracted from the
prosodic target components in the vicinity L,, around each syl-
lable m. During the prediction phase, the weighted sum of the
moving average and the maximum in L,, (denoted by s (m)),
is added back as a post-processing stage at the m-th syllable.
Formally,

Sa(m) =« - CLqueLm(s"eu(q)) +

(1 — @) - mazger,, (Sneu(q)) @

where sy, (q) is a corresponding predicted neutral component,
obtained from the generic fine-grained prosody prediction, and
L., is a subset of indices in the vicinity of the m-th syllable. We
used o = 0.6 and o = 0.8 in our experiments (Section 6.1).
The word-emphasis prosody model was trained on the same
labeled voice corpus as described in Section 5, but with the
agreement of one out of four labelers to maximize the amount
of data for prosody model training. Originally, the model was
developed for user-controlled word emphasis [2]. To adapt it to



the error-prone automatic word-emphasis prediction, additional
constant-window Gaussian smoothing was applied on the pre-
dicted pitch trajectory (with window size of about 120 ms).

5. Labeled Speech Corpora

We recorded about 20 hours of a professionally native female
US English speaker. The recorded corpus is comprised of topic-
specific claims and evidences [19, 20, 21], which the speaker
was instructed to read in a persuasive and lively manner. In turn,
based on the recorded speech, each sentence was annotated by
4 professional labelers for emphasized words. The labelers got
the original text and the recorded data with the following guide-
lines. i) Emphasized words are words that clearly stand out in
the speech relatively to most of the words in the sentence. ii)
Label only based on the speech, and not based on the impor-
tance of the word in the text.

The total corpus contains 9,461 sentences, with a total of
168,409 words. The kappa agreement [22] between the label-
ers was 0.35. This indicates the subjectivity of the task. Ta-
ble 1 shows the statistics regarding the different levels of agree-
ment between the labelers. The number and ratio of emphasized
words agreed upon by even three labelers is quite low, so we
used agreement level 2 as the ground-truth.

Agreement | Total words | Emphasized | Ratio
1 168,409 26,307 15.6
2 168,409 9,093 5.4
3 168,409 4,196 2.5
4 168,409 1,530 0.01

Table 1: Labeling statistics

Table 2 lists some examples of labeled emphasized words
from the ground-truth (shown in bold).

Absolute (count, ratio)

Relative (count, ratio)

not (252, 0.26%))
all (216, 0.43%))
no (101, 0.3%))
very (89, 0.33%))
do (85, 0.15%))
should (78, 0.2%))
any (69, 0.33%))
is (47, 0.01%))
one (46, 0.1%))
every (44, 0.41%))

thousands (19, 0.73%)
completely (17, 0.68%)
half (22, 0.66%)

All (25, 0.59%)
millions (20, 0.58%)
everything (15, 0.57%)
No (19, 0.57%)
absolutely (12, 0.57%)
ever (24, 0.56%)
everyone(13, 0.54%)

1 | The policy is considered as a great success in helping to
implement China’s current economic growth

2 | The pursuit of doping athletes has turned into a modern
day witch hunt

3 | Qualifications should be the only determining factor

Table 2: Example labeled emphasized words

Table 3 shows the top labeled emphasized words, sorted
by absolute counts (left column) and by relative counts (right
column). Each word is presented with the number of times
it was emphasized, and with the ratio to its total number of
occurrences in the collection. In the right column we show
only words that appear at least 20 times in the collection. Note
that words are presented with their original case, since our pre-
diction model is case-sensitive. The top emphasized words in
term of absolute counts are mainly negative terms and adjec-
tives, while the top emphasized words by ratio are adjectives
and numbers (e.g., thousands, millions).

6. Experiments

To verify the quality and expressiveness of the predictors of the
emphasized words when used in the TTS system [2], we con-
ducted a listening test as described below. As a preliminary step
for tuning the parameters, we ran a five-fold cross-validation on
the 9,461 labeled sentences. In each fold, 20% were dedicated

Table 3: Top emphasized words

for test, while the other 80% were divided between training
(70%) and dev (10%). The model was implemented in Ten-
sorFlow?’.

We first fine-tuned the weight parameter pw (Equation 1),
which controls the trade-off between recall and precision. A
higher value for pw is expected to increase recall (since it
boosts the positive examples), but in exchange it decreases pre-
cision. We used the full DNN as depicted in Figure 1. For
the pre-trained embeddings, we used Google’s word2vec em-
bedding [13] of dimension 300, that were trained on a corpus
of 100B words®>. We used the FC layer with output dimension
200, followed by a fanh activation. We used hidden size of 128
for the LSTM in the third layer and, since we use bidirectional
LSTM, the output of this layer is 256. The prediction layer con-
verts from 256 to 1. We further used a dropout of 0.75 and the
Adagrad optimizer [23] with an initial learning rate of 0.5. We
applied early termination and take the model parameters, which
achieved the best results on the dev set. We refer to this config-
uration as FC200-BiLSTM128.

In all experiments of all methods in this section, we filtered
out pronouns and prepositions from being emphasized, even if
they were predicted to be so. In addition, we filtered very fre-
quent words such as all and very from being emphasized. This
is because those words are already caught and realized to some
extent with the basic prosody generation model [18]. We dis-
covered that the explicit emphasis prediction of those words
does not contribute much on average, but occasionally sounds
exaggerated. Furthermore, we avoided emphasizing consecu-
tive words.

Figure 2 shows the recall, precision, and Fl-measure for
various values of the pw parameter for the selected hyper pa-
rameters. The results are averaged over the five folds. As ex-
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Figure 2: Effect of pw. Network uses three layers: FC (200d),
BiLSTM(128d) and another FC (1d)

2https://www.tensorflow.org
3https://code.google.com/archive/p/word2vec



pected, increasing pw results in a higher recall and a lower pre-
cision. For example, pw=2 results in recall of 0.11 and pre-
cision of 0.41, whereas for pw=3, recall increases to 0.18 but
precision drops to 0.33. Note that the specific task at hand is
more precision oriented (we prefer emphasizing less words but
with higher accuracy). Therefore, we selected pw=2.

Next we tried different configurations of the network as
shown in Figure 3. All methods use pw=2. The full network
(FC200-BiLSTM128) outperforms partial networks (where the
embedding and prediction layers are fixed and the internal two
layers are changed), both in terms of precision and recall. For
example, replacing the BiLSTM layer with an LSTM (FC200-
LSTM128) achieved a precision of 0.40 and recall 0.08. Re-
moving the BiILSTM layer completely (FC200) achieved preci-
sion of 0.38 and recall 0.09, while removing the FC layer com-
pletely (BiLSTM128) achieved precision of 0.35 and recall of
0.05. We also tried other sizes (e.g., FC128-BiLSTMS50) and
more than one BiLSTM layers (not shown in the figure) but they
were a bit inferior to the FC200-BiLSTM128 configuration.

0.4
0.3
0.2
0.1

I

Recall Precision

s

00 FC200-BiLSTM128 [l 1 FC200-LSTM128 [l 1 FC200
B BiLstmi128 Em  LsTt™MI28 Hm LR

Figure 3: Compare different networks, pw=2

The various configurations of the DNN, were compared
to a logistic regression (LR) classifier (last bars in Figure 3),
which was trained with the following features [8]. POS tag-
ging (14 categories, coded with 1-hot vectors), information con-
tent, word offset in sentence, and a word negation indicator
(extracted from a dictionary of negation shifters such as not,
shouldn’t, never, etc.). We replaced the ID of the word as used
in [8] with a 300-D word embedding, as we used in the DNN
method, to further improve the performance of [8]. For each
word, we extracted the above features for the word itself, as
well as for the previous and subsequent words in the sentence.
Overall, the number of features for each word are 951 (317 for
each of the word itself, previous word and next word).

Due to the imbalanced number of positive vs negative
examples (the emphasized words are only 5.4% of the total
words), we down-sampled the negative examples. We tried vari-
ous sampling rates, s € [1, 20], where sample rate s means that
the number of negative examples in a sentence is s times the
number of positive examples. In this way, at test time we keep
all learned parameters, and only modify the bias term Sy [17]

)

—= 3

Bo = Bo + log(;——) — log(

where 7 is the original ratio of the positive examples (0.054
as appears in Table 1) and 7 is the modified ratio, given by
1/(1+s). The best result was obtained for s=10 with a precision
rate of 0.32 and a recall level of 0.08, which are much lower than
the rates achieved by the DNN — precision 0.41 and recall 0.11.
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6.1. Listening Test

To evaluate the proposed systems within the expressive TTS
framework, a subjective listening evaluation was conducted on
Amazon Mechanical Turk (AMT), in the form of a mean opin-
ion score (MOS) test [24]. The MOS test included 50 out-
of-corpus stimuli per system and 25 votes per stimulus, pro-
vided by 105 paid anonymous native speakers. A single sub-
ject was removed as a result of the outlier rejection [24]. In
addition to the neutral prosody reference model (NOEMPH),
the prosody prediction systems with various emphasis strength
strengths (EMPHO6 for o = 0.6 and EMPHO6 for o = 0.8,
in Equation 2 above) were applied using our word prediction
model with the best parameters (FC200-BiLSTM128), trained
on 90% of the labeled corpus (Section 5) with 10% left for dev
for early termination of the training.

In addition to the standard MOS test in which the subjects
were asked to rate the quality and naturalness of the synthe-
sized speech on a five-grade qualitative scale (Poor, Bad, Fair,
Good, Excellent), the users were asked to assess the expres-
siveness of the synthesized samples. A five-grade scale was
utilized for this test too, with its values explained to the sub-
jects (very non-expressive, non-expressive, neutral, expressive,
very expressive). The evaluation scores are reported along with
their 95% confidence interval and p-values against the reference
(NOEMPH) in Table 4. The bold results are statistically signifi-
cant (p < 0.05) compared to the reference system (NOEMPH).
Both word emphasis systems significantly improve subjective
expressiveness, while preserving the original quality and natu-
ralness. The system with stronger emphasis (EMPHO8) resulted
in slightly higher expressiveness and slightly lower quality than
the system with weaker emphasis (EMPHO06), but the differ-
ences were not found to be statistically significant.

MOS NOEMPH EMPHO06 EMPHO08
Expressive- | 3.65 £0.05 | 3.72 £0.05 | 3.74 £ 0.05
ness (p=0.017) (p < 0.01)
Quality 3.82£0.05 | 3.84+0.05 | 3.82+0.05

Table 4: MOS results for word emphasis synthesis with u=+95%
confidence and p-value against NOEMPH

7. Summary and Future Work

In this work, we presented a fully automated TTS system for
improving the perceived expressiveness of synthesized speech.
The system is built from two components: i) a word emphasis
prediction model and ii) a prosody generation model that uti-
lizes the predicted emphasized words. Subjective experiments
demonstrated that the synthesized speech based on this model
indeed was perceived as more expressive, while preserving the
quality and naturalness of the original.

For future work, inspired by [25], we plan to learn a person-
alized model for each labeler. Another possible area of study is
to explore multi-voice training of the proposed word emphasis
models and their application to unseen voices.
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