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Abstract
Gaussian generative models have been shown to be equivalent
to discriminative log-linear models under weak assumptions for
acoustic modeling in speech recognition systems. In this paper,
we note that the output layer of deep learning model consists
of a first-order log-linear model, also known as logistic regres-
sion, which induces a set of homoscedastic distributions in the
generative model space, resulting in linear decision boundaries.
We leverage the above equivalence to make the deep learning
models more expressive by replacing the first order log-linear
model with a second-order model, which leads to heteroscedas-
tic distributions, as a result, the linear decision boundaries are
replaced with quadratic ones. We observe that the proposed
architecture yields a significant improvement in speech recog-
nition accuracy compared to the conventional model having a
comparable number of parameters. Relative improvement of
8.37% and 3.92% in word error rate (WER) is obtained for shal-
low and deep feed-forward networks respectively. Moreover,
with Long Short-Term Memory (LSTM) networks with projec-
tion matrix, we obtain significant relative improvement in WER
over the standard architecture.
Index Terms: log-linear models, gaussian generative models,
Long Short-Term Memory, acoustic modeling

1. Introduction
With the advancement of deep learning, Deep Neural Networks
(DNNs) ([1] [2]) and Recurrent Neural Networks (RNNs) [3]
have replaced Gaussian Mixture Models (GMMs) [4] due to
their superior performance for automatic speech recognition
(ASR) tasks. Recently, Long Short-Term Memory (LSTM)-
RNNs based acoustic models [5] have been shown to outper-
form DNN and vanilla RNN models [6]. Since DNNs are low-
footprint networks, they are preferred for on-device models and
currently being used for many production systems.

Several studies have been done to design the deep learn-
ing models capable of encoding meaningful features which can
potentially enhance the acoustic modeling. In [7], a network
is proposed which takes raw multichannel waveforms as input
directly and learns a bank of bandpass beamformers. [8] pro-
poses to combine Convolutional Neural Networks (CNNs) [9]
and LSTMs layers which transforms features into space making
that output easier to classify. [10] presents time-delay neural
networks (TDNNs) which are effective in modeling long-term
temporal dependencies. The goal of this paper is to explore
the impact and performance improvements on expanding fea-
ture space at penultimate layer because of second-order terms.

Recently Heigold et al. [11] showed that under rather weak
assumptions, there is an equivalence between generative and
discriminative model [12]. Specifically, a Gaussian model with
a prior was shown to generate exactly the same posteriors as the
ones generated by a log-linear model with suitable parameters.

In other words, given a Gaussian generative model, log-linear
model parameters can be computed to yield the same posteriors
and vice versa. As a special case, it was shown that a first-order
log-linear model (only 0-th and 1-st order terms) induces a set
of Gaussian models with homoscedastic distributions, i.e., all
covariance matrices being equal to constant (any positive defi-
nite matrix) [13]. It is well known from the classification deci-
sion theory that under homoscedastic assumptions, the decision
boundaries are hyper-planes, leading to linear classifiers [14].

In this paper, we note that neural network based acoustic
models, whether DNN or LSTM, may be seen as layer by layer
processing of acoustic features, followed by a first-order log-
linear classifier (also known as logistic regression) at the out-
put layer. Lower layers essentially discover low-level feature
representation while the higher layers progressively learn more
abstract features. Therefore, it may be inferred that the input
and hidden layers learn to project the features into space where
they become as linearly separable as possible, while the output
layer (a linear classifier) operating to predict the classes using
hyperplane classifiers [14]. We argue that the homoscedastic-
ity (or equivalently the linear classification scenario) is rather a
sub-optimal assumption. To this end, we propose to extend the
log-linear model in DNN and LSTM to include a second-order
term. Using the equivalence, it may be shown that, in this case,
the log-linear model becomes equivalent to heteroscedastic gen-
erative models, i.e., all co-variances are different.

The main contribution of the paper is to show that under this
proposed framework, DNN, as well as LSTM, outperforms the
conventional model that is based on first-order log-linear model.
Our results show that with the proposed method, we can obtain
the performance that can only be achieved with the conventional
system having significantly more parameters. Hence, our ap-
proach results in reducing footprint of the network without af-
fecting accuracy, making it suitable for on-device systems. Ear-
lier works on the similar lines are: introducing low-rank layer
before output [15] and projection matrix after LSTM layer [5].

The remainder of this paper is organized as follows: Section
2 describes the equivalence between generative and log-linear
models and how deep learning models are related to log-linear
models. Section 3 describes how we leverage the equivalence
by introducing second-order terms at penultimate layer to make
the log-linear models even more expressive. Experimental set-
up and results for DNNs and LSTMs based acoustic models are
discussed in Section 4, followed by conclusions in Section 5.

2. Equivalence of Log-linear and Gaussian
models

In this section, we present a detailed account of log-linear,
showing the equivalence with Gaussian model with a prior [11].
Unlike generative models, log-linear models are discriminative
models that directly express the posterior-probabilities of the
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Table 1: Transformation of Log-linear model into gaussian
model parameters

1. Σs = - 1
2
(λs2 + ∆λ2)−1

2. µs = Σsλs1
3. p(s) = exp(λs0 + 1

2
(µTs Σ−1

s µs + log|2πΣs|+ ∆λ0))

classes. It was shown by Heigold et al. that these models can be
equivalently represented by Gaussian model with priors, such
that the posterior probabilities induced by both are exactly the
same. In other words, given the parameters of the Gaussian
model, the parameters of the log-linear model can be analyt-
ically computed, and vice versa. The log-linear models with
generalized features can be expressed as follows:

pλ(s|x) =
1

Zλ(x)
exp

(
I∑

i

λsifi(x)

)
(1)

where x ∈ RD denotes the input features, fi : RD → R,x 7→
fi(x) is a generalized feature mapping, λsi ∈ R are model pa-
rameters, s ∈ {1, ..., S} are the classes and Zλ(x) is a normal-
ization constant that makes sure that the quantities are probabil-
ities. By taking the generalized features as : zeroth - (f0(x) =
1), first - (f1d(x) = xd), and second - (f2dd′(x) = xdxd′ )
order features, the second order log-linear model takes the form

pλ(s|x) =
1

Zλ(x)
exp(λs0 + λTs1x + xTλs2x) (2)

where the log-linear model parameters are λ = {{λs0 ∈
R}, {λs1 ∈ RD}, {λs2 ∈ RD×D}}. This is the form of the
model we are interested in this paper. Now, let us consider a
generative Gaussian model with prior – the joint distribution is
given by

pθ(s,x) = p(s)N(x|µs,Σs) (3)

where the parameters are θ = {{µs ∈ RD}, {Σs ∈ RDXD :
Σs � 0}}. p(s) is the class prior such that {p(s) ∈ R+ :∑
s p(s) = 1}. By Bayes’ rule, pθ(s|x) = pθ(s,x)/pθ(x). In

[11], it was shown that the parameters of the Gaussian distribu-
tion can be transformed to the log-linear space such that the two
models induce the same posterior probabilities. The transfor-
mation in the reverse direction, however, is not straight-forward
as the generative model parameters are restricted to satisfy cer-
tain constraints, namely, the covariance matrix being positive
definite and the priors must be positive and sum to unity. To
this end, it was noted that if a constant term (class independent)
is added to the log-linear parameters, the posterior probabilities
remain unchanged. In particular, a transformation of the param-
eters, λsi 7→ λsi + ∆i, does not alter the posterior in Eq. 2. By
taking advantage of this ambiguity, the mapping in the reverse
direction was worked out, which are shown in Table 1. The
∆λ2 is chosen such that the co-variance becomes positive def-
inite and ∆λ0 is chosen to ensure that the priors terms remain
probabilities.

We observe that the second-order log-linear model defined
by Eq. 2 induces heteroscedastic distributions in the genera-
tive model space, which leads to quadratic decision boundaries.
When λs2 is set to zero, Eq. 2 reduces to a first-order log-linear
model given by

pλ(s|x) =
1

Zλ(x)
exp(λs0 + λTs1x). (4)

Figure 1: Typical neural network set-up

Using the equivalence again, without the loss of generality the
covariance matrices may be set to Σs = I, ∀s, which corre-
sponds to homoscedastic distributions. In this setting, the gen-
erative model induces linear (hyperplane) decision boundaries.

2.1. Comparison of Neural Network and Log-linear models

In this section, we draw a comparison between neural-network
based acoustic model and log-linear model. We note that the
output layer of DNN (or LSTM) consists of a logistic regression
model as shown in Fig. 1, defined as

Os = pw(s|x) =
exp(wT

Lsy
L−1 + bLs)∑S

k=1 exp(wT
Lky

L−1 + bLk)
(5)

where wLs is the weights pertaining to the s-th output unit and
bLs is the bias. By comparison with Eq. 4, we note that the out-
put layer corresponds to a first-order log-linear model, with the
difference that the features are processed by a neural network
up to the last hidden layer, i.e., yL−1 = φ(x). This leads to the
familiar conclusion that the neural networks process features
layer by layer projecting them onto space at the output layer
where they can be classified using a linear classifier, which is a
first-order log-linear model (or logistic regression).

3. Proposed Method
Taking motivation from the equivalence discussed above, we
propose to replace the first-order log-linear component in the
output layer of the neural network with a second-order term.
Now, the expression for (DNN or LSTM) prediction is given by

pw(s|x) =
exp(ϕϕϕs)∑S
k=1 exp(ϕϕϕk)

, (6)

where

ϕϕϕs = yL−1TW2sy
L−1 + wT

1sy
L−1 + bs. (7)

W2s in Eq. 7 refers to the affine transform in the second-order
term. The motivation behind the modification is to remove
the constraint of homoscedasticity in the standard deep learn-
ing models. By forcing the second order parameters W2s to be
(non-constant and) trainable, the covariance matrices in the gen-
erative space would naturally become different for each state,
giving rise to heteroscedastic distributions. As a consequence,
the linear decision boundaries are replaced with quadratic ones,
which are more optimal.

However, the downside of having a second-order term is
that this introduces a considerably large number of parameters
into the network. Specifically, for a network with S number
of output units and k number of neurons at last hidden layer,
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Figure 2: Proposed model architecture

k2S additional parameters are introduced (k2 for every state s),
which is hard to train. In order to deal with the issue, our ap-
proach is to impose restrictions on the structure of W2s. In
particular, we use diagonal or bi-diagonal matrices. We refer to
this approach as Second-Order Log-Linear Model with Diago-
nal (SeLoM-D) or Bi-diagonal (SeLoM-B) W2s matrices.

3.1. Diagonal matrices

Assuming that W2s is diagonal (SeLoM-D), the quadratic term
in Eq. 7 will turn out to be:

yL−1TWdiag
2s yL−1 = w̄T

2s

(
yL−1 � yL−1

)
(8)

where w̄2s is the vectorized representation of the diagonal ele-
ments of Wdiag

2s and� denotes element-wise multiplication. In
this proposed architecture shown in Fig. 2, the additional com-
ponent (I) represents the implementation of diagonal W2s ma-
trix (from Eq. 8) which is a second-order log-linear model in
yL−1 space. The network training can be done in a straight-
forward manner by noting that

ϕϕϕs =
[
wT

1s; w̄
T
2s

] [
yL−1T ;

(
yL−1 � yL−1

)T ]T
+ bs

= w̃T
s ỹL−1 + bs (9)

where “;” denotes row-wise concatenation. The w̃s can be
trained using the standard back-propagation formula used for
affine components, however with changes appropriate to the
feature expansion shown in Eq. 9. We note that in this case,
the number of parameters increases by kS.

3.2. Bi-diagonal matrices

In this set-up, the W2s matrix is assumed to be bidiagonal
(SeLoM-B), i.e., principal diagonal and either the diagonal
above or the diagonal below are non-zero. We note that without
loss of generality, the matrix can be considered as bidiagonal
instead of tridiagonal. For the sake of simplicity, we have taken
the W2s matrix to be lower bidiagonal. The quadratic term in
Eq. 7 becomes:

yL−1TW2sy
L−1 =w̄T

2s[y
L−1 � yL−1]

+ w̄T
2s,(−1)[y

L−1
−1 � yL−1

+1 ]

where w̄2s and w̄2s,(−1) are the vectorized representations of
diagonal and lower diagonal elements of W2s respectively, and

yL−1
−1 = [yL−1

1 , yL−1
2 , ...., yL−1

N−1] (10)

yL−1
+1 = [yL−1

2 , yL−1
3 , ...., yL−1

N ] (11)

The reduced form (similar to first order term) can be modeled
using two additional matrices (I & II) shown in Fig. 2. Besides
the square terms, (yL−1 � yL−1), as discussed in section 3.1,
it introduces cross-terms with offset one (yL−1

−1 � yL−1
+1 ).

The extra parameters, i.e., additional weight matrix (I) cor-
responding to diagonal W2s and additional weight matrices (I
and II) for bidiagonal W2s are learned along with other param-
eters of the network while training jointly.

4. Experiments
Experiments are conducted using 500 hours of US English
multi-condition data for acoustic model training. The align-
ments have been generated using a GMM-HMM model with
context-dependent states (or senones) trained using boosted
MMI method [16] [17]. Features used are 13-dimensional Mel
Frequency Cepstral Coefficients (MFCC) extracted from ev-
ery speech frames. All the models are initialized using layer-
wise discriminative pre-training, followed by [18] cross-entropy
(CE) fine-tuning. A WFST-based decoder has been used. The
size of the n-gram language model is 20-million and a lexicon
containing 1 million words has been used. The test was con-
ducted on 4 hours of eval data set for computation of word error
rate (WER). The Kaldi speech recognition toolkit [19] was used
for the experiments. All experiments are conducted using either
DNN and LSTM based acoustic model to evaluate the perfor-
mance of our proposed method. The performance metrics are
WER and number of parameters in the network. To verify that
the observed performance improvement is not just because of
having more parameters introduced by the second order terms,
we evaluate the proposed method with the conventional model
with an approximately equal number of parameters.

4.1. DNN models

4.1.1. Model Architecture

In the DNN set-up, we use a splicing of ± 5 at input layer to
form 143 dimension input per frame. We have used the method
of using low-rank layer before the output layer which signifi-
cantly reduces the number of parameters as proposed by [15].
Two different architectures of the feed-forward models have
been used as our baselines over which we have done experi-
ments with our proposed method.

• DNN with 2 feed-forward hidden layers (1024 units) and
1 low rank layer (128 units)

• DNN with 5 feed-forward hidden layers (1024 units) and
1 low rank layer (128 units)

4.1.2. Results and Discussion

We performed experiments with 3 variants of both the baselines
using the proposed method.

1. Introducing diagonal W2s term (SeLoM-D) at low-rank
layer output (Section 3.1)

2. Making W2s term bidiagonal (SeLoM-B) at low-rank
layer as described in Section 3.2
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Table 2: Results on 3-layers feed-forward models

Model Architecture No. of Parameters WER (%)

DNN - 3 layers 1.86M 15.09
+ SeLoM-D 2.39M 13.11
+ SeLoM-B 2.91M 12.91

DNN - 4 layers 2.91M 14.09

Table 3: Results on 6-layers feed-forward models

Model Architecture No. of Parameters WER (%)

DNN - 6 layers 5.01M 13.15
+ SeLoM-D 5.54M 12.35
+ SeLoM-B 6.06M 12.01

DNN - 7 layers 6.06M 12.5

3. Conventional feed-forward model with 1 hidden layer
more than the baseline set-up which makes the number
of parameters same as case 2.

Tables 2 and 3 show the results of our experiments using shal-
low and deep feed-forward networks respectively. Results show
that using proposed method, these networks outperform their re-
spective baselines significantly. However, relative improvement
for shallow networks is more than that for deep networks. For
shallow networks, a relative improvement of 8.37% in WER is
obtained over a standard system having same number of param-
eters whereas it is 3.92% for the deep ones. This can be ex-
plained by fact that shallow networks learn comparatively low-
level feature representation and hence has more scope of learn-
ing abstraction which is useful for better classification. On the
other hand, deep networks learn high-level feature representa-
tion on their own which are already discriminative. Hence, in-
troducing non-linearity doesn’t help them as much as compared
to the shallow networks. However, based on results of both the
networks, it can be argued that the deep learning models be-
come more expressive after the second-order term is introduced
using our proposed method which cannot otherwise be obtained
just by adding an extra layer in the conventional model.

4.2. LSTM models

Long Short-Term Memory (LSTM) networks are known to cap-
ture long-term temporal relations, hence, they are widely used
for acoustic modeling. Standard LSTM cells architecture in-
troduces a large number of parameters. Several variants like
simplified LSTM [20], Gated Recurrent Units (GRUs) [21], are
commonly used to reduce the number of parameters.

4.2.1. Model Architecture and Training

In our experiments, we have used LSTM with projection ma-
trix (LSTMP) [5] that has an additional projection layer which
maps hidden state to lower dimension, reducing the number of
parameters significantly. Splicing (± 2) is used at input layer to
form 65 dimension input per frame. 20 frames in the sequence
are used for truncated backpropagation through time (BPTT)
[22], 40 frames are used as left context to the sequence for pre-
diction of the first label when passed through the model while
training. The output is delayed by 5 time-steps for the LSTMP
to see future frames while predicting for the current frame [5].

Table 4: Results on LSTM models

Model Architecture No. of Parameters WER (%)

LSTMP - 3 layers 3.43M 12.5
+ SeLoM-D 4.49M 12.05
+ SeLoM-B 5.55M 11.32

Small LSTMP + SeLoM-D 3.37M 12.21

LSTMP - 5 layers 5.27M 11.56

The baseline model consists of 3 uni-directional LSTMP hid-
den layers having 512 cells and projection matrix of dimension
512×256, hence, effectively hidden state dimension is 256.

4.2.2. Results and Discussion

We have experimented with 3 variants of LSTMP (other than
the baseline) using the proposed method.

1. Introducing diagonal W2s term (SeLoM-D) at 3rd layer
projection matrix output

2. Making W2s term bidiagonal (SeLoM-B) at 3rd layer
projection matrix output

3. Reducing the 3rd layer projection matrix to 512×128
(small LSTMP) and introducing SeLoM-D W2s term

The first two experiments incorporate additional matrices cor-
responding to second-order terms because of which extra pa-
rameters are inserted. ∼30% additional parameters have to
be learned for the first variant whereas ∼60% for the second
one. In the third case, we reduce the last layer projection ma-
trix dimension from 512×256 to 512×128 and introduce diag-
onal second order parameter, W2s. Projection matrices for first
two layers are kept the same, i.e., 512×256. This ensures that
the model is almost of the same size (in fact, slightly lesser) as
baseline model still it performs better (relative improvement of
2.32% in WER). Table 4 shows the results of our experiments.
We note that the SeLoM model yields a consistent improve-
ment over the baseline LSTMP model. In order to compare with
LSTMP (3 layers) + SeLoM-B (analogous to what we did for
DNNs), we have conducted experiment with LSTMP - 5 layers
which has similar number of parameters. A relative improve-
ment of 2.07% in WER is obtained with our proposed method
over the standard 5 - layers LSTMP.

5. Conclusions
In this paper, we have leveraged the equivalence of gener-
ative gaussian and log-linear models for acoustic modeling.
We have proposed a method which makes the distributions for
deep learning models heteroscedastic which are otherwise ho-
moscedastic in standard networks. Our experiments show that
the relaxation of homoscedasticity by using second-order log-
linear model (SeLoM) form makes the model more expressive
resulting in significant improvement in performance. For shal-
low feed-forward networks, a relative improvement of 8.37%
in WER is obtained over the standard model with a compara-
ble number of parameters whereas that of 3.92% is obtained for
the deep networks. For LSTM networks with projection matrix,
a relative improvement of 2.07% in WER is obtained over the
standard architecture. Results indicate that the expanded fea-
ture space obtained using the proposed method becomes more
discriminative which cannot be merely obtained by adding an
extra layer or incorporating more parameters.
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