
State Gradients for RNN Memory Analysis

Lyan Verwimp, Hugo Van hamme, Vincent Renkens, Patrick Wambacq

ESAT – PSI, KU Leuven, Belgium
{lyan.verwimp, hugo.vanhamme, vincent.renkens, patrick.wambacq}@esat.kuleuven.be

Abstract
We present a framework for analyzing what the state in RNNs
remembers from its input embeddings. Our approach is inspired by
backpropagation, in the sense that we compute the gradients of the
states with respect to the input embeddings. The gradient matrix is
decomposed with Singular Value Decomposition to analyze which
directions in the embedding space are best transferred to the hidden
state space, characterized by the largest singular values. We apply
our approach to LSTM language models and investigate to what
extent and for how long certain classes of words are remembered
on average for a certain corpus. Additionally, the extent to which a
specific property or relationship is remembered by the RNN can be
tracked by comparing a vector characterizing that property with the
direction(s) in embedding space that are best preserved in hidden
state space.
Index Terms: LSTM, RNN, deep learning, language modeling,
memory

1. Introduction
Neural networks are remarkably powerful models that are currently
the state of the art in many applications, such as speech recognition
(e.g. [1]), language modeling [2, 3] and image recognition (e.g. [4]).
However, one of the main disadvantages often mentioned is the
fact that they remain ‘black-box’ models, meaning that what the
network has learned can only be explained in terms of its weights,
that are not interpretable by humans. Very often, extensions of
existing models are proposed based on how we think that the models
function. However, an alternative approach is first trying to better
understand how and why neural networks work, and then, if new
insights are gained, improving the models based on those insights.

We propose a framework to investigate what the states of recur-
rent neural network models (RNNs) remember from their input and
for how long. We apply our approach to the current state of the art in
language modeling, long short-term memory [5] (LSTM) LMs [6],
but it can be applied to other types of RNNs too and to other models
with continuous word representations as input. Usually, it is not
straightforward to see how an input word embedding is encoded
in the state of the neural network, because the latter is the result of
a series of weight multiplications, nonlinearities and combinations
with the states of the previous time steps. Our framework sheds
more light on the relationship between the input and the state.

Our framework is inspired by backpropagation, the algorithm
that is used for training neural networks based on the gradient of the
loss with respect to the weights. Instead of computing the gradient
of the loss, we compute the gradient of the state with respect to the
input embedding to capture the influence of the input on the state.
To examine how long input words are remembered by the RNN,
we calculate the gradient with a certain delay – with respect to the
input word embedding a few time steps earlier, which is similar to
the unfolding during backpropagation through time. The gradient
matrix is decomposed with Singular Value Decomposition (SVD)
and the relationship between the singular values (SVs), that indicate

how much of the input embeddings is preserved in the state, and
the delay is inspected. This relationship can be investigated for a
gradient matrix averaged over all words, over specific classes of
words or over occurrences of individual words.

Additionally, we can track whether a specific relationship
encoded in the input embedding is remembered by the RNN. It has
been shown that relationships between word embeddings can be
characterized as vector offsets, e.g. the male – female and common
person – royal person relationships, as demonstrated by the famous
example ‘king - man + woman = queen’ [7]. In order to measure
to which extent linear relationships in embedding space are retained
in hidden state space, we again make use of the SVD of the state
gradients, assuming that some linear relationships in state space are
present. The directions in the embedding space with the largest SVs
are best preserved in the hidden state space. Hence, we can compare
a vector characterizing a specific property to those directions to see
how well the property is remembered in the hidden state.

In what follows, we will first give an overview of related work
(section 2). Then we explain how our approach works in section 3
and demonstrate it with experimental results in section 4. We end
with conclusions and an outlook to future work (section 5).

2. Related work
A general framework to explain the predictions of a classifier
is presented in [8], but it can only work with interpretable data
representations such as binary vectors, whereas we present a
framework that can deal with continuous (word) embeddings.

In vision, several backpropagation-based techniques for visu-
alization and investigation of the inner workings of neural networks
have been proposed [9, 10]. These methods differ from our approach
in the sense that they compute gradients of the output of the network
with respect to the input, like in classical backpropagation.

Hermans and Schrauwen [11] examine the influence of each
layer in a character-level LM by setting its output to 0 and calculate
the distance between hidden states after processing sequences that
are identical except for one typo. Li et al. [12] use several techniques
for visualization: t-SNE visualization [13], a heatmap of the neuron
activations over time, the first-derivative saliency method [9, 10],
and the variance of a specific word embedding with respect to an
averaged word embedding. Ji et al. [14] make use of representation
erasure: measuring the contribution of individual input units by
erasing them and seeing how it affects the performance of the
model. Strobelt et al. [15] release a tool that visualizes the evolution
in LSTM hidden states for several text processing tasks. Karpathy
et al. [16] visualize the activations of individual cells, plot gate
activation statistics and perform error analysis. In this paper, we do
not visualize the hidden states themselves, but rather the influence
of the input on the hidden states.

Another approach is trying to understand the reason why the
network makes a certain prediction. Lei et al. [17] extract the parts of
the input that are important for predicting the output, while Alvarez-
Melis and Jaakkola [18] provide a general framework that can ex-
plain the predictions of models with structured input and output.

Interspeech 2018
2-6 September 2018, Hyderabad

1467 10.21437/Interspeech.2018-1153

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1153.html


Analyses can also be used to improve models, as Aubakirova
and Bansal [19] demonstrate: they look at the activations of
CNN models trained for politeness prediction and discover new
features that can improve feature-based models. They also use
the first-derivative saliency method to show how much each input
contributes to the final decision of the model. Adi et al. [20] analyze
sentence embeddings by using them as input for a classifier that
is trained to predict sentence length, word content and word order.

Finally, work has also been done towards examining the ability
of NNs to model linguistic phenomena such as subject – verb agree-
ment [21, 22]. Broere [23] investigates the syntactic properties of
skip-thought sentence representations by training logistic regression
on them to predict POS tags and dependency relations. In a similar
vein, we predict POS tags from word embeddings to verify whether
specific classes are linearly separable in the embedding space.

3. SVD of state gradients
3.1. Average memory of the RNN

We calculate the gradients of every component in the state of the
RNN with respect to every component in the input embedding of
time step t− τ , where t is the current time step and τ the delay.
For example, if the input sentence is the cat lies on the mat and
we are currently processing the word mat, the input for a delay of
0 is mat itself, the input for a delay of 1 is the etc. For a specific
time step and specific delay, our gradients can be arranged in a
gradient matrix Gt,τ (size of the embedding× size of the hidden
state). Averaging over all time steps for a certain delay τ gives us
the average gradient matrix for τ : Ḡτ . This matrix hence contains
the average influence of every component of the input embedding
τ steps later on every component of the RNN state.

We decompose the average gradient matrix with SVD:

Ḡτ =U Σ VT =σ1 u1 vT1 +σ2 u2 vT2 +... (1)

in which U and V are orthogonal matrices (with columns ui and
vi) and Σ is a rectangular diagonal matrix with the singular values
σi. We can interpret V as directions in the embedding space, Σ as
the extent to which the directions in the embedding space can be
found in the hidden state space and U as corresponding directions
in the hidden state space. Hence, the directions with the largest
SVs (lowest index) are directions in embedding space that are best
remembered by the RNN.

In order to investigate how well the RNN remembers on a
corpus level, we can track the largest SV or the sum of all SVs
with respect to the delay τ . We can also compare the SVs based
on gradient matrices averaged over specific classes of words only
(see section 4.2), or even over the occurrences of individual words.

3.2. Tracking a specific property

If we want to know to what extent a specific property encoded in the
input embedding is remembered in the state, we will compare the
vector encoding this property to the directions in VT corresponding
to the largest SVs of the average gradient matrix.

We calculate the extent to which a certain property, e.g. the
difference between singular (‘sg’) and plural (‘pl’), is remembered
as follows: we first define a property as the difference between the
averaged embeddings for the classes separated by that property.

da−b= ēa−ēb (2)

where ēa and ēb are the result of averaging all embeddings of words
belonging to classes a and b respectively. Before defining a specific
property as the difference between the average embeddings, we will

first check whether the embeddings of the two classes are linearly
separable by training a linear classifier (see section 4.3).

We propose two methods to investigate the extent to which
a property is remembered. Firstly, we can compare d with the
subspace of the embedding space spanned by the directions that
are best remembered, the n largest right-singular vectors,Hn. To
be able to do this, we make the orthogonal projection of d onHn:

y=projHn d=Vn VT
n d (3)

where Vn is the matrix containing the n first columns of V. As-
suming d is normalized to unit length, we can calculate the cosine
similarity between y and d as follows:

cos(d,Hn)=cos(d,y)=
dT Vn VT

n d

‖d‖ ‖Vn VT
n d‖=

∥∥∥VT
n d
∥∥∥ (4)

The cosine similarity between d andHn is a measure of how close d
is to the top n directions that are best remembered in the RNN state:
the closer to 1, the better the property specified by d is remembered.

A second option is comparing d with the direction in
embedding space that is best remembered. To do this, we multiply
d with the average gradient matrix:

r=
∥∥Ḡτ×d

∥∥ (5)

where r is a measure of the extent to which the difference between
classes a and b is remembered by the state. If d would be the
embedding direction that is best remembered in the state, then it
would be equal to v1 and the result of the multiplication in equation 5
would be σ1. Hence, in order to get a relative measure of how well
the difference between two classes is remembered, we compare r
with σ1 and obtain a ‘extent to which the property is remembered,
relative to the property that is best remembered’, which we will
henceforth refer to as the ‘relative memory’m:

m=
r

σ1
(6)

Notice that the cosine similarity between d and Hn would
be equal to the relative memory if σn =σ1 and σn+1 = 0. Thus,
both measures capture the extent to which a certain property is
remembered, but the cosine similarity only compares d with the
first n right-singular vectors while taking into account the strength
with which those directions are remembered, whereas the relative
memory compares with all right-singular vectors but is a measure
relative to the direction that is best remembered. In section 4.4, we
present results for both measures.

4. Experiments
4.1. Setup

We will focus on the cell state or memory of the LSTM as state, but
note that similar experiments can be done for the hidden state/output
of the LSTM or states of other RNNs.

We train LSTM LMs on the widely used Penn TreeBank (PTB)
benchmark [24], that contains 900k word tokens for training, 70k
word tokens as validation set and 80k words as test set. We chose
PTB because it contains manually assigned part-of-speech (POS)
tags that we will use to train linear classifiers, but 900k words is quite
small. Thus, we also train embeddings on Wall Street Journal, which
encompasses PTB and is hence in-domain data, but is much larger:
we use the CSR LM-1 corpus (LDC) with non-verbalized punctua-
tion (years 87–94) which contains 110M words. Embeddings trained
on these data give better classification results than embeddings
trained on PTB only (see section 4.3) and are hence better linearly

1468



0 5 10 15 20 25 30
0

0.5

1

1.5

2

delay τ

la
rg

es
ts

in
gu

la
rv

al
ue
σ
1

σ1 joint.tr.
σ1 cbow WSJ

0

10

20

30

40

50

su
m

of
si

ng
ul

ar
va

lu
es
∑
σ

∑
σ joint.tr.∑

σ cbow WSJ

Figure 1: Largest SV and sum of SVs of the average gradient matrix
with respect to delay between the cell state and the input, calculated
on the validation set of PTB-norm.

separable. Thus, we want to use pre-trained WSJ embeddings in our
PTB LMs too. The LM with these embeddings is henceforth referred
to as ‘cbow WSJ’, whereas the LM with embeddings trained from
scratch is called ‘joint.tr.’. However, since the version of PTB that
is commonly used for language modeling [25] is normalized differ-
ently than WSJ, the vocabularies of the two data sets do not match. If
we want to use pre-trained WSJ embeddings, we need an embedding
for every word in the PTB corpus. Hence, we chose to do some addi-
tional normalization on PTB (henceforth referred to as ‘PTB-norm’),
e.g. removing hyphens from certain words (e.g. ‘company-owned’
→ ‘company owned’). We only changed one thing for the WSJ
data (‘WSJ-norm’): since numbers are converted to ‘N’ in PTB
and inverting this operation is much more difficult, we chose to
convert numbers in WSJ to ‘N’ instead. The resulting vocabulary
for PTB-norm contains 10921 words instead of the usual 10k words.

We use TensorFlow [26] to train the LSTMs and to compute
the gradient matrices. The linear classifiers are trained with
scikit-learn [27], with a grid search over several hyperparameters:
regularization (L1, L2), regularization strength, initialization seed,
frequency-based class weights or not, one vs all or multinomial
loss and optimization algorithm. The word2vec embeddings (same
size as the LM embeddings) are trained with the default word2vec
parameters (cbow).

The LSTM LM consists of an embedding layer of dimension
64 and 1 layer of 256 LSTM cells. Using a larger embedding size in
combination with dropout [28] on the embeddings gives slightly bet-
ter results, but we choose to not use dropout on the embeddings/input
of the LSTM cell since we are interested in seeing what the model
learns from the input, and masking the input might have unexpected
effects on our analysis. We do apply dropout on the output of the
LSTM cells with a probability of 50%. The norm of the gradients
is clipped at 5. We train on batches of size 20, each batch element
containing a text sequence of 50 words. The LSTM is trained with
stochastic gradient descent, starting with a learning rate of 1 for the
first 6 epochs, after which it is exponentially decreased with a decay
of 0.8. As a reference, this model has a validation perplexity of 81.5
and a test perplexity of 78.8. If we use cbow embeddings trained
on WSJ to train an LM (without re-training the embeddings), they
perform worse in the LM: perplexities 87.0 (validation) and 83.0
(test), even though they give better logistic regression accuracies.

4.2. Average memory

In Figure 1, we plot the largest SV σ1 and the sum of all SVs
∑
σ

for the average gradient matrix per delay. For the LM with jointly

Table 1: Largest SV σ1 (τ = 0) per POS. The values between
brackets are normalized SVs.

Class joint.tr. cbow WSJ

pronouns 1.95 (0.20) 0.96 (0.27)
nouns 1.66 (0.17) 0.42 (0.12)
verbs 1.65 (0.17) 0.48 (0.13)
adjectives 1.57 (0.16) 0.54 (0.15)
adverbs 1.44 (0.15) 0.59 (0.17)
conj./prep. 1.44 (0.15) 0.54 (0.15)

trained embeddings (blue), there is a sharp decrease in the first part
of the plot, indicating that much of the information that is present
in the cell state about the current word (τ=0) is quickly forgotten
after about 5 words. However, on average, some information is
still remembered even after processing more than 20 words. If we
compare the trends of σ1 and

∑
σ (notice the different scales on the

left and right y-axes), we see that the largest SV decreases relatively
slower, which seems to indicate that the memory becomes more
selective when the delay increases: the ratio σ1/

∑
σ becomes larger.

The plots for the LM with pre-trained WSJ embeddings (green)
show not only smaller absolute values but also a less sharp decrease.
This model is much more selective when the delay increases:
for a delay of 29, the ratio σ1/

∑
σ is 50% compared to 16%

for the first LM. A possible explanation for this is that the cbow
embeddings (inherently limited to the short term) do not contain
certain information that is important for the LM on the long term
and hence the LM can remember less relevant information.

If we compare σ1 for different classes of input words (see
column ‘LM joint.tr.’ in Table 1), we notice some tendencies
that intuitively make sense. We observe that pronouns have the
largest effect on the cell state, followed by nouns. This makes
sense since these word classes are important from a syntactical (e.g.
pronouns/nouns having an effect on which verb conjugation should
follow) and/or semantic (nouns carrying much of the meaning of the
sentence) point of view. In a similar vein, verbs can also carry seman-
tics and are important in predicting the syntactic role or POS from
the next word(s) (e.g. a specific preposition, a semantic class ...). On
the other hand, adjectives, adverbs, conjunctions and prepositions
are less informative in predicting the next words. In the last column
of Table 1, we present the largest SVs for the LM with cbow WSJ
embeddings. We only compare the relative relationships between
the POS classes, since the absolute values of the SVs are based on
different vector spaces. Even though the class that is best remem-
bered, pronouns, stays the same, we see some tendencies that are
counterintuitive. Adverbs, adjectives and conjunctions/prepositions
are better remembered than nouns and verbs. We also observe that
the variance between the POS classes is larger for this LM, as the
normalized values (between brackets) indicate. Clearly there is quite
some difference in the manner in which the two LMs process the
embeddings, which is an interesting topic for further investigation.

4.3. Linear classification

Before investigating the extent to which a difference vector for a cer-
tain property is remembered in the cell state, we first check whether it
makes sense to categorize a certain property as a difference vector by
verifying whether the two classes are separable by a linear classifier.

In Table 2, we present the validation accuracies for different set-
tings of the classifier and different types of word representations. If
we compare the type of word representations in the first two columns,
we see that in most cases, the embeddings that are jointly trained
with the LM (‘LM emb’) are better than the cbow embeddings in

1469



Table 2: Validation accuracy of logistic regression to predict POS-
based classes. Numbers between brackets = number of target classes.
N=nouns, V=verbs, Adj=adjectives, Adv=adverbs, Pro=pronouns.

PTB-norm WSJ-norm
Class cbow LM emb cbow LM emb

all (34) 35.99 42.39 59.44 58.59
nouns (4) 71.23 73.54 89.69 90.15
N-V-Adj-Adv-Pro 57.34 66.33 75.00 75.04
N-V 73.60 77.28 84.65 83.42
N-Adj 79.06 84.47 87.53 88.59
V-Adv 91.48 95.00 95.93 97.78
sg-pl 84.31 87.08 95.85 96.31
common-proper 84.46 83.69 91.54 92.15

this task. Training the embeddings on more, in-domain, data (WSJ)
also increases the classification accuracy. Using the embeddings of
an LM trained on WSJ usually gives slightly better results than cbow
embeddings, but given that the perplexity of the PTB LM with those
embeddings is significantly higher (107.2 compared to 83.0 for cbow
embeddings), we choose to focus on the cbow WSJ embeddings.

The first part of the table contains results for fine-grained distinc-
tions. Trying to predict all POS tags jointly (first row) is clearly too
difficult, probably because the number of classes is much larger (34)
and because there are quite some infrequent classes. Distinguishing
between the different sub-types for a class, e.g. sg, pl, sg proper and
pl proper for the class of nouns, is easier. The second part of the
table contains results for more coarse-grained distinctions, e.g. ‘N-V’
is a classifier that tries to predict whether the embeddings belong to
a noun or a verb. In general, we observe that the classifier achieves
reasonable accuracies if the number of classes to separate is limited.

The final part of the table are examples of specific properties
that can be derived from the PTB POS tags. We observe that both
the distinction sg – pl noun and common – proper noun gives
a reasonable accuracy. Hence, we will investigate how those
properties are remembered in the LSTM cell in the next section.

4.4. Tracking specific properties

In Figure 2, we plot for the difference vectors separating singular
versus plural nouns and common versus proper nouns the relative
memory m and the cosine similarities with H5. The cosine
similarities between the two difference vectors is -0.59 for the first
LM (left) and -0.57 for the second LM (right), so there is a clear
distinction between them.

For the LM with jointly trained embeddings, we see that
according to both measures the sg – pl distinction is slightly better
remembered for a delay of 0, while for the other delays the common
– proper distinction is better remembered. There is a dip for the
cosine similarities between delays 1 – 9 (sg – pl) and 2 – 8 (common
– proper) and a sharp decrease for the relative memory at a delay of
2, indicating that the properties seem mostly important on the short
term. However, the distinction stays in memory even for longer
delays, as both measures show. We also plot the ratio of σ1 and
the sum of the 5 largest SVs with respect to the sum of all SVs
(gray lines). Notice that if the delay increases, the ratio increases
too, which confirms our observation for Figure 1 that the memory
becomes more selective over time.

For the LM with pre-trained WSJ embeddings, we see similar
trends as for the other LM, namely that the discussed properties
are mostly important on the short term and that generally, the
distinction common – proper is better remembered than sg – pl.
However, the difference between the properties is much smaller

0 10 20 30
0

0.2

0.4

0.6

0.8

1

delay τ

m
/c
o
s
(
d
,H

5
)

joint.tr.

m, singular vs plural noun

m, common vs proper noun

σ1 /
∑
σ

cos(d,H5), singular vs plural noun

cos(d,H5), common vs proper noun
∑5
n=1σn /

∑
σ

0 10 20 30

delay τ

cbow WSJ

Figure 2:m and cos(d,H5) for sg – pl and common – proper nouns.

and even more so for longer delays. Since for delays larger than
10, m is only about 0.2 and the cosine similarities are around 0.4
even though we are comparing the difference vectors with about
60% (for delays between 10 and 20) to 80% (for delays larger than
20) of the original embedding space, this seems to suggest that this
model does not remember these properties very well on the long
term, which is in line with our previous observation that this LM
is very selective on the long term (see section 4.2).

5. Conclusion and future work
We present a framework to analyze what the states of an RNN
remember from their input and for how long. The approach is
based on the gradients of the states with respect to the input word
embeddings with a certain delay. We apply this framework to the
cell state of LSTM language models. Based on SVD on the gradient
matrix we inspect how long the RNN remembers on average
or for specific word classes. We can also track to what extent a
specific property is remembered by comparing it with directions in
embedding space that are best transferred to the hidden state space.

We observe that the LSTM LM is capable of remembering
at least part of the input from 30 time steps earlier, but becomes
much more selective when the delay increases. Using embeddings
pre-trained on a much larger, in-domain dataset not only increased
the perplexity of the model but also made its memory more selective,
indicating that the pre-trained embedding lack certain (long-range)
relevant information. Additionally, we show that the LSTM LM
remembers certain word classes such as pronouns more strongly
than others and that the property of singular versus plural is slightly
better remembered than common versus proper noun.

In the future, we would like to extend this research by track-
ing different properties, doing a more extensive comparison (more
values of n, larger delays) and looking at more specific contexts.
It would also be interesting to compare with the LSTM hidden
state/output and with other types of RNNs, and to examine the influ-
ence of certain hyperparameters, such as the size of the hidden layer.

6. Acknowledgements
This research is funded by the Flemish government agency IWT
(project 130041, SCATE).

1470



7. References
[1] K. J. Han, S. Hahm, B.-H. Kim, J. Kim, and I. Lane, “Deep

Learning-based Telephony Speech Recognition in the Wild,” in
INTERSPEECH, 2017, pp. 1323–1327.

[2] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and Optimizing
LSTM Language Models,” in International Conference on Learning
Representations (ICLR), 2018.

[3] ——, “An Analysis of Neural Language Modeling at Multiple Scales,”
arXiv preprint arXiv:1803.08240, 2018.

[4] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on
Learning,” AAAI Conference on Artificial Intelligence, vol. 4, pp.
4278–4284, 2017.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[6] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM Neural Networks
for Language Modeling,” in INTERSPEECH, 2012, pp. 1724–1734.

[7] T. Mikolov, W. Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Conference of the North
American Chapter of the Association for Computational Linguistics
(NAACL), 2013, pp. 746–751.

[8] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why Should I Trust
You?”: Explaining the Predictions of Any Classifier,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 1135–1144.

[9] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing
Higher-Layer Features of a Deep Network,” Université de Montréal,
Tech. Rep., 2009.

[10] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolu-
tional Networks: Visualising Image Classification Models and Saliency
Maps,” in International Conference on Learning Representations
(ICLR), 2014.

[11] M. Hermans and B. Schrauwen, “Training and Analysing Deep
Recurrent Neural Networks,” in Advances in Neural Information
Processing Systems (NIPS), 2013, pp. 190–198.

[12] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and Understand-
ing Neural Models in NLP,” in Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL),
2016, pp. 681–691.

[13] L. V. der Maaten and G. Hinton, “Visualizing Data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[14] J. Li, W. Monroe, and D. Jurafsky, “Understanding Neural Networks
through Representation Erasure,” arXiv preprint arXiv:1612.08220,
2016.

[15] H. Strobelt, S. Gehrmann, B. Huber, H. Pfister, and A. M. Rush,
“LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in
Recurrent Neural Networks,” IEEE Transactions on Visualization and
Computer Graphics, vol. 24, pp. 667–676, 2018.

[16] A. Karpathy, J. Johnson, and F.-F. Li, “Visualizing and Understanding
Recurrent Networks,” in International Conference on Learning
Representations (ICLR): Workshop track, 2016.

[17] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing Neural Predictions,”
in Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2016, pp. 107–117.

[18] D. Alvarez-Melis and T. S. Jaakkola, “A causal framework for
explaining the predictions of black-box sequence-to-sequence models,”
in Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2017, pp. 412–421.

[19] M. Aubakirova and M. Bansal, “Interpreting Neural Networks to
Improve Politeness Comprehension,” in Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 2016, pp. 2035–2041.

[20] Y. Adi, E. Kermany, Y. Belinkov, O. Lavi, and Y. Goldberg, “Fine-
grained Analysis of Sentence Embeddings Using Auxiliary Prediction
Tasks,” in International Conference on Learning Representations
(ICLR), 2017.

[21] T. Linzen, E. Dupoux, and Y. Goldberg, “Assessing the ability of
lstms to learn syntax-sensitive dependencies,” Transactions of the
Association for Computational Linguistics, vol. 4, pp. 521–535, 2016.

[22] J.-P. Bernardy and S. Lappin, “Using Deep Neural Networks to Learn
Syntactic Agreement,” Linguistic Issues in Language Technology
(LiLT), vol. 15, no. 2, 2017.

[23] B. Broere, “Syntactic properties of skip-thought vectors,” Master’s
thesis, Tilburg University, 2017.

[24] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Build-
ing a Large Annotated Corpus of English: the Penn Treebank,”
Computational Linguistics, vol. 19, pp. 313–330, 1993.

[25] T. Mikolov, M. Karafiát, L. Burget, J. C̆ernocký, and S. Khudanpur,
“Recurrent neural network based language model,” in INTERSPEECH,
2010, pp. 1045–1048.

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
G. I. Andrew Harp, M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, M. Schuster, R. Monga, S. Moore,
D. Murray, C. Olah, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems,” Software available from tensorflow.org, 2015.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp.
1929–1958, 2014.

1471


