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Abstract
Neural networks have been proven to be powerful models for
acoustic scene classification tasks, but are still limited by the
lack of ability to be temporally invariant to the audio data. In
this paper, a novel temporal transformer module is proposed
to allow the temporal manipulation of data in neural networks.
This module is composed of a Fourier transform layer for fea-
ture maps and a learnable feature reduction layer, and can be
inserted into existing convolutional neural network (CNN) and
Long short-term memory (LSTM) models. Experiments on
LITIS Rouen dataset and DCASE2016 dataset show that the
proposed method leads to a significant improvement when com-
pared with the existing neural networks. Our approach is able
to perform significantly better than the state-of-the-art result on
LITIS Rouen dataset, obtaining a relative reduction of 23.6%
on classification error.
Index Terms: acoustic scene classification, long short-term
memory, convolutional neural network, Fourier transform

1. Introduction
Acoustic scene classification (ASC) is a task of classifying en-
vironments from the sounds they produce [1][2], with applica-
tions in devices where the environment can be defined based on
physical or social context, e.g., park, office, meeting, etc [3].

Influenced by traditional speech and music processing
methods, early works on ASC focused on modeling the time-
frequency characteristic of audio features. Eronen [4] em-
ployed Mel-frequency cepstral coefficients (MFCCs) as fea-
tures, and constructed Gaussian mixture and hidden markov
models (GMM-HMM) to get knowledge about acoustic cate-
gories. Eronen and co-authors [5] further developed on this
work by considering a larger group of features, obtaining an
overall 58% accuracy in the classification of 18 different acous-
tic scenes. In recent years, more specific features are motivated
by the fact that the environmental sound is different from speech
and music in time and frequency structures. New features are
often inspired by other research fields such as image process-
ing features [6][7], matrix factorization features [8][9], unsuper-
vised learning features [10] and so on. Meanwhile, Deep neural
networks [11][12] are also used to learn feature representations.
Supported by large amounts of training data, deeper architec-
tures significantly improve the performance of many tasks in
speech processing and computer vision. However, the perfor-
mance of acoustic scene classification methods based on deep
neural networks is relatively poor and asks for more efforts.

Some researchers have treated audio spectrograms as nat-
ural images in audio processing tasks. Fig.1 shows two spec-
trograms of “restaurant” scene, the collision sound of dishes is
a typical sound in“restaurant” scene, which occurs in time t1
and t2 separately, arising from the random segmentation during
the actual recording process. Intuitively, shifting the spectro-

grams in time direction according to t1 and t2 does not affect
the semantic representation of these spectrograms. A desirable
property of an ASC system which is able to reason about au-
dios is to eliminate the temporal shifting interference. In image
processing field, natural images are often taken as equivalent
in each direction, the small object pose and part deformation
can be disentangled using local max-pooling layers in convolu-
tional neural network (CNN) [13][14][15]. Unlike pooling lay-
ers where the receptive fields are fixed and local, spatial trans-
former networks [16] was proposed to actively spatially trans-
form an image or a feature map by producing an appropriate
transformation for each input sample. Furthermore, reinforce-
ment learning driven selective attention networks [17] was in-
troduced to model selective attention in deep CNN. However,
for audio signals, the spectrogram structure is not equivalent in
time and frequency direction. Thus these mechanisms are not
invariant to long-term temporal transformations of audio data.

In this paper, we introduce a temporal transformer module,
which can be inserted into existing neural networks to provide
temporal transformation capabilities. This module is composed
of a Fourier transform layer for feature maps and a learnable
feature reduction layer. Unlike pooling layers and other spatial
transformer mechanisms in image processing field, the tempo-
ral transformer module is able to deal with the arbitrary length
of temporal shifting. The transformation can be performed not
only on audio spectrograms but also on all feature maps pro-
duced by neural networks. Notably, this module can be trained
with standard back-propagation, allowing for the end-to-end
training of the models they are injected in.

The rest of the paper is organized as follows. In Section
2, we describe our motivation and implementation details of
temporal transformer module. Next, we discuss how to insert
the temporal transformer module to existing CNN and LSTM
models in Section 3. Then we conduct several experiments and
evaluate the performance of the proposed method in Section 4.
At last, we conclude this paper and present our future work in
Section 5.

Figure 1: Spectrogram examples of restaurant scene. t1 and t2
are the start points of collision sound of dishes.
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2. Temporal Transformer Module
In this section, we describe the implementation details of a
temporal transformer module. The input audio signal is first
transformed to a sequence of vectors using Short-time Fourier
Transform (STFT) [18], the output spectrogram can be repre-
sented as X1...T = {x1,x2, ...,xT }. T is determined by
the frameshift in STFT, corresponding to the time resolution
in frame theory [19]. The dimension of each vector x can be
labeled as N , which is determined by frame length. Temporal
transformer module is a differentiable module which applies a
temporal transformation to spectrograms or feature maps such
as X , producing a single output vector y = {y1, y2, ..., yN}.
For simplicity, we first consider single transforms for each row
of the spectrogram, which can be represented as x̃1...T =
{xi,1, xi,2, ..., xi,T }, where i is the row index of X . Then we
can generalize to the whole spectrogram, as shown in experi-
ments.

A temporal transformer module consists of two parts, a
Fourier transform layer and a feature reduction layer. The
Fourier transform method is injected here to eliminate the tem-
poral shifting. The feature reduction layer is used to produce
a single output per transformer. The combination of these two
parts forms a temporal transformer module and will now be de-
scribed in more details in the following sections.

2.1. Fourier Transform Layer

We start with the simplified situation that the temporal shift-
ing of a discrete time series x̃ can be shown as x̃t =
{xi,(t+1)T , xi,(t+2)T , ..., xi,(t+T )T }, where t is the temporal
shifting and represent unwanted temporal variations, (n)T rep-
resents the modulo operation that (n)T = (n mod T ) + 1. We
desire to eliminate the temporal shifting and obtain the unified
expression for both x̃ and x̃t.

The Fourier transform [20] and related techniques are of
importance in signal processing filed. For our case, the dis-
crete Fourier transform (DFT) representations of x̃ and x̃t can
be given as Eq.1, where k is the frequency index and j is the
imaginary unit. Then we compute the absolute value and get
the expression that ‖D̃(k)‖ = ‖D̃t(k)‖. Now the temporal
shifting t has been eliminated from x̃t.

D̃(k) =
1

T

T∑

n=1

xi,ne
−j 2πnk

T

D̃t(k) =
1

T

T∑

n=1

xi,(t+n)T e
−j 2πnk

T (1)

We generalize to the whole spectrogram, each row of the
spectrogram is operated using DFT as Eq.1, then the absolute
value can be shown as Fig.2. Fig.2b and Fig.2d are respectively
the transformed representation of Fig.2a and Fig.2c. The result
shows that the temporal shifting between Fig.2a and Fig.2c has
been almost eliminated. For our classification task, Fig.2b and
Fig.2d can simplify the subsequent process, and lead to superior
classification performance.

The fast Fourier transform (FFT) algorithm [21] has been
used for a long time to implement DFT in many signal process-
ing applications because of its high efficiency. However, when
we insert this module into standard neural networks, it is dif-
ficult to implement parallel FFT operations on GPU devices,
and the deep structure of FFT will block the standard back-
propagation in the network. These limitations of FFT make

(a) Original-spec-1 (b) Fourier-spec-1

(c) Original-spec-2 (d) Fourier-spec-2

Figure 2: Spectrograms after Fourier transform layer. (a) and
(c) are the original spectrograms produced by STFT algorithm.
(c) and (d) are the correspondingly spectrograms processed af-
ter Fourier transform layer.

us trace back to the original definition of DFT as Eq.1. The
definition is rewritten in the following form for convenience of
explanation:

W 1 = [cos(
2πnk

T
)]nk

W 2 = [sin(
2πnk

T
)]nk

S̃(ik) =

√√√√(
T∑

n=1

xinW 1
nk)2 + (

T∑

n=1

xinW 2
nk)2 (2)

where 1 ≤ n ≤ T , 1 ≤ k ≤ T , 1 ≤ i ≤ N , S̃(ik) =

‖D̃(k)‖ as Eq.1.
In this form, W 1 and W 2 are pre-set parameters and do

not need training in neural networks. DFT operation is now
simplified as a parameterless fully connected layer in neural
networks, which makes standard back-propagation procedure
efficient and practical. Some speech recognition systems bene-
fited from using Mel-frequency scale instead of real frequency,
whereas in our case, this mapping has not provided any notable
increase in performance.

2.2. Feature Reduction Layer

To perform feature reduction for S̃ in Eq.2, we apply an addi-
tional feature reduction layer to produce the output feature vec-
tor. For audio spectrograms, each row represents a frequency
bin. From our earlier investigation, we know that the energy
distribution and coherence vary tremendously in different fre-
quency bins. Thus the feature reduction is applied to each row
of S̃ respectively. The concatenation of all these reduced fea-
tures forms the output feature vector of the whole temporal
transform module. This layer takes S̃ ∈ RN×T as input and
output feature vector y ∈ RN as Eq.3, where Θ ∈ RN×T is
the trainable parameters and can be trained with standard back-
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propagation method.

ỹ(i) =
T∑

k=1

S̃ikΘik

y = [ỹ1, ỹ2, ..., ỹN ] (3)

3. Temporal Transformer Networks
As described in Section 2, the proposed temporal transformer
module can be inserted into many existing neural network struc-
tures. In this section, we introduce three commonly used struc-
tures including deep neural network (DNN), CNN and LSTM
to verify the applicability of this module.

Fig.3(a) is the DNN structure consisting of several fully
connected layers and a softmax layer. When temporal trans-
former module is inserted, the input spectrogram X is pro-
cessed using Eq.2 and Eq.3 to produce a feature vector y for
the following fully connected layers. However, for DNN struc-
ture without temporal transformer module, an average-overtime
pooling operation over X is applied and the average value
yi = mean(x̃) is taken as the feature vector, where x̃ has
been defined in Section 2.

Fig.3(b) is the CNN structure as described in [22].
In general, xi:i+j refers to the concatenation of frames
[xi,xi+1, ...xi+j ]. The convolution operation involves a fil-
ter w ∈ Rhm, which is applied to a window of h frames to
produce a new feature. For example, a feature ci is generated
from a window of frames xi:i+h−1 by Eq.4, where b ∈ R is
a bias term and f is a non-linear function. This filter is ap-
plied to each possible window of frames to produce a feature
map c = [c1, c2, ...cT−h+1]. For CNN structure with tempo-
ral transformer module, c is processed using Eq.2 and Eq.3 to
produce a feature value yi. Otherwise, a max-overtime pooling
operation[23] over the feature map is applied and the maximum
value yi = max(c) is taken as the feature corresponding to this
filter. For both cases, one feature is extracted using one filter.
This model uses multiple filters with varying window sizes to
obtain multiple features. The features extracted here are then
passed to several fully connected layers and a softmax layer,
whose structures are the same with Fig.3(a).

ci = f(w · xi:i+h−1 + b) (4)

Fig.3(c) is the LSTM structure as described in [24]. The
LSTM layer takes the spectrogram X as an input sequence with
length T and outputs H1...T = {h1,h2, ...,hT }. When tem-
poral transformer module is inserted, the LSTM outputs H is
processed using Eq.2 and Eq.3 to produce a feature vector y
for the following fully connected layers. Otherwise, the final
hidden state is used as the feature vector. The following fully
connected layers and softmax layer are the same with Fig.3(a).

The classification loss of these three structures is given by
Eq.5, where n is the number of audios, k is the number of cat-
egories, l is the number of layers, o is the category labels and
p is the probability distribution produced by neural networks.
In this case, neural networks in Fig.3 can be optimized using
standard back-propagation method.

ε =
n∑

i=1

k∑

j=1

oij · log(pij) + λ
∑

l

‖ wl ‖2 (5)

4. Experimental Evaluation
In this section, we employ LITIS ROUEN dataset [6] and
DCASE2016 dataset [3] to conduct acoustic scene classifica-
tion experiments.

Details of these datasets are listed as follows.

- LITIS ROUEN dataset: This is the largest publicly avail-
able dataset for ASC to the best of our knowledge. The
dataset contains about 1500 minutes of acoustic scene
recordings belonging to 19 classes. Each audio record-
ing is divided into 30-second examples without overlap-
ping, thus obtain 3026 examples in total. The sampling
frequency of the audio is 22050 Hz. The dataset is pro-
vided with 20 training/testing splits. In each split, 80%
of the examples are kept for training and the other 20%
for testing. We use the mean average accuracy over the
20 splits as the evaluation criterion.

- DCASE2016 dataset: The dataset is released as Task 1
of the DCASE2016 challenge. We use the development
data in this paper. The development data contains about
585 minutes of acoustic scene recordings belonging to
15 classes. Each audio recording is divided into 30-
second examples without overlapping, thus obtain 1170
examples in total. The sampling frequency of the audio
is 44100 Hz. The dataset is divided into 4 folds. Our ex-
periments obey this setting, and the average performance
will be reported.

4.1. Audio Pre-procession

For both datasets, the audio signal is first transformed using
Short-time Fourier Transform with a frame length of 1024 and
a frameshift of 220, the number of frequency filters is set to be
64. For both datasets, the examples are 30 seconds long. In the
data preprocessing step, we first divide the 30-second examples
into 1-second clips with 50% overlap. Then each clip is pro-
cessed using neural networks in Fig.3. The classification results
of all these clips will be averaged to get an ensemble result for
the 30-second examples.

4.2. Hyper-parameters and Evaluation

The size of audio spectrograms is 64× 128. For DNN structure
in Fig.3(a), the fully connected layers can be summarized as
128×128×19(15). For CNN structure in Fig.3(b), the window
sizes of convolutional layers are 64× 2× 64, 64× 3× 64 and
64×4×64, the fully connected layers are 196×128×19(15).
For LSTM structure in Fig.3(c), we use the number of LSTM
cells as 128, LSTM layers as 1, the fully connected layers as
128× 128× 19(15). For DCASE2016 dataset, we use dropout
rate of 0.5. For all these methods, the learning rate is 0.001,
l2 weight is 1e−4, training is done using the Adam [25] update
method and is stopped after 100 training epochs.

In order to compute the results for each training-test split,
we use the classification error over all classes. The final classi-
fication error is its average value over all splits.

4.3. Experiments without Temporal Transformer Module

We begin with experiments where we train different neural
network models without temporal transformer module on both
datasets. We train vanilla DNN, CNN and LSTM whose details
have been given in Section 3 and Section 4.2. All networks have
approximately the same number of parameters and are trained
with identical optimization schemes.
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Figure 3: Neural networks with temporal transformer module.

The results of these experiments are shown in Table 1.
Comparing with related works, our approaches on LITIS Rouen
dataset achieve gains in accuracy, among which LSTM model
performs much better than other models such as CNN, DNN
and Nonnegative Matrix Factorization (NMF) [26] and results
in state-of-the-art performance. However, on DCASE2016
dataset, LSTM model is the worst model when compared with
CNN, DNN and NMF, this can be attributed to the lack of
training data for the DCASE2016 dataset, where in the case
of smaller training sets, matrix factorization methods such as
NMF can be a good alternative to learn meaningful represen-
tations. Actually, our approach of DNN model obtains poorer
performance than [27] on both datasets, mainly because of the
stability of Constant Q-transform (CQT) [28] feature represen-
tations. In conclusion, our approaches of neural networks obtain
excellent results on both datasets. Some results are worse on
DCASE2016 dataset because of the feature extraction method,
but these results do not affect our following testing of the tem-
poral transformer module.

Table 1: Acoustic scene classification errors using vanilla NN
structures without temporal transformer module.

Model LITIS Rouen (%) DCASE2016 (%)
vanilla DNN 5.30 24.3
vanilla CNN 3.21 23.1
vanilla LSTM 2.54 27.4
RNN-Gam [29] 3.4 -
CNN-Gam [30] 4.2 -
MFCC-GMM [3] - 27.5
DNN-CQT [27] 3.4 21.9
Sparse-NMF [27] 5.4 17.3
DNN-Mel [31] - 23.6
CNN-Mel [32] - 24.0

4.4. Experiments with Temporal Transformer Module

We now test our temporal transformer networks on both
datasets. We extend our baseline DNN, CNN and LSTM in Sec-
tion 4.3 by inserting a temporal transformer module as shown
in Fig.3. The number of parameters increases less than 30% for
all these models.

The results of these experiments are shown in Table 2. The
temporal transformer modules on DNN, CNN and LSTM all
achieve performance gains. On LITIS Rouen dataset, the tem-
poral transformer CNN obtains a new state-of-the-art result,

which is even better than temporal transformer LSTM. This is
because that the LSTM model itself has some capacity to deal
with temporal shifting in audio data, thus the effect of tempo-
ral transformer module is less than CNN model. The temporal
transformer CNN achieves an error of 1.94%, outperforming the
former state-of-the-art result obtained using baseline LSTM by
relatively 23.6%. On DCASE2016 dataset, all these three tem-
poral transformer networks outperform the corresponding base-
line models. Notably, the performance of temporal transformer
CNN on DCASE2016 dataset reaches DNN model using CQT
features in [27], meaning that the temporal transformer module
makes up for the lack of feature extractions.

Table 2: Acoustic scene classification errors using temporal
transformer NN structures. TT represents the temporal trans-
former module.

Model LITIS Rouen (%) DCASE2016 (%)
TT-DNN 2.60 22.4
TT-CNN 1.94 21.8
TT-LSTM 2.14 24.2
vanilla DNN 5.30 24.3
vanilla CNN 3.21 23.1
vanilla LSTM 2.54 27.4

5. Conclusions
In this paper, we introduce a new temporal transformer mod-
ule for neural networks. This module is able to perform tem-
poral transformations for an arbitrary length of temporal shift-
ing in audio data and can be inserted into many existing neu-
ral networks, and can be learned in an end-to-end fashion.
For commonly used DNN, CNN and LSTM structures, we see
consistent gains in accuracy using temporal transformers on
two acoustic scene classification datasets. On LITIS ROUEN
dataset, our approach of temporal transformer CNN is able to
perform significantly better than the state-of-the-art result and
obtains 1.94% on classification error. This module is useful for
other sequence modeling tasks and is possible to be extended to
text and video classification tasks.
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