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Abstract
Voice activity detection (VAD) is a challenging task in very low
signal-to-noise ratio (SNR) environments. To address this issue,
a promising approach is to map noisy speech features to corre-
sponding clean features and to perform VAD using the gener-
ated clean features. This can be implemented by concatenating
a speech enhancement (SE) and a VAD network, whose param-
eters are jointly updated. In this paper, we propose denoising
variational autoencoder-based (DVAE) speech enhancement in
the joint learning framework. Moreover, we feed not only the
enhanced feature but also the latent code from the DVAE into
the VAD network. We show that the proposed joint learning ap-
proach outperforms conventional denoising autoencoder-based
joint learning approach.
Index Terms: voice activity detection, speech enhancement,
joint learning, joint training, denoising variational autoencoders

1. Introduction
Voice activity detection (VAD), the process of classifying a
frame into speech or non-speech, is an important module in
many speech applications such as speech coding, automatic
speech recognition (ASR), speech enhancement (SE), speaker
recognition, and speaker diarization.

Most of the early VAD approaches were based on raw
acoustic features, including time domain energy, pitch, and
zero-crossing rate. Another type of conventional VAD meth-
ods is a statistical model-based approach in which the distri-
butions of speech and noise frames are modeled by Gaussian
distributions in discrete Fourier transform (DFT) domain and
the likelihood ratio is used to decide whether a frame is speech
or non-speech [1]. Later, machine learning-based methods,
such as support vector machine (SVM) and hidden Markov
model (HMM) were applied for VAD. Recently, deep learn-
ing architectures, such as fully connected deep neural networks
(DNNs) [2], convolutional neural networks (CNNs) [3] and
Long Short-Term Memory (LSTM) recurrent neural networks
[4] have achieved tremendous success in VAD, which have be-
come popular for VAD modeling.

Despite the ongoing development over the years, VAD is
still challenging in very low signal-to-noise ratio (SNR). To im-
prove the robustness against noisy environments, we employ a
joint learning method for VAD. The joint learning of a speech
enhancement and a voice activity detection DNN was first intro-
duced in [5] which shows that the joint learning approach yields
better results for VAD. This approach was motivated by several
previous works for noise robust speech recognition [6, 7, 8].

In this work, we extend the existing joint learning method
in three ways: Firstly, we employ batch normalization [9] to
reduce the internal covariate shift during training. In [10], it is
already proven that the batch normalization is effective in reduc-
ing the internal covariate shift for the joint learning approach in

speech recognition tasks. We show that this is also true for VAD
tasks. Secondly, the parameter updates of the SE network de-
pend not only on the SE cost function but also on the VAD cost
function, which is motivated by [10]. Because of this, the front-
end is able to provide enhanced features which is more suitable
for the subsequent VAD task. Finally, we apply a denoising
variational autoencoder (DVAE) for speech enhancement. The
DVAE maps noisy features to a latent code and then reconstructs
clean features by decoding the latent code. We feed not only the
enhanced feature but also the latent code into the VAD network.
Experimental results show that the proposed approach outper-
forms the conventional joint learning-based method.

The rest of this paper is organized as follows. Section 2
describes the variational autoencoder (VAE) and the proposed
architecture. Section 3 introduces our joint learning approach.
The experimental setup is described in Section 4. The results
and analysis are provided in Section 5. We conclude this work
in Section 6.

2. Model
2.1. Variational Autoencoder

The variational autoencoder (VAE) [11] is a latent variable gen-
erative model, which couples the approach of variational infer-
ence with deep learning. Here the latent variable generative
model pθ(x|z) (also called decoder) for observed variable x is
parametrized by a deep neural network with parameters θ. An
inference model qφ(z|x) (also called encoder) is parametrized
by a second deep neural network with parameters φ. A latent
variable z is defined to embed the compressed information of
the data x, and the encoder maps a data space into its corre-
sponding latent space. The decoder reconstructs the data from
a sample point in the latent space. The parameters, θ and φ,
are jointly learned by maximizing the variational lower bound
L(θ, φ;x) of the log marginal likelihood with

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + L(θ, φ;x)
≥ L(θ, φ;x)
= −DKL(qφ(z|x)||p(z)) + Eqφ(z|x)[log(pθ(x|z)]

(1)

In the VAE framework of this paper, both the encoder and
the decoder are parametrized using diagonal Gaussian distri-
butions, which are qφ(z|x) = N (z;µz, σ

2
zI) and pθ(x|z) =

N (x;µx, σ
2
xI), respectively. The prior is assumed to be an

isotropic Gaussian distribution p(z) = N (z;0, I) that lacks
free parameters.

To yield a differentiable network after sampling, we use
the reparameterization trick in which the random variable z ∼
qφ(z|x) is reparametrized as a deterministic variable z = µz +
σz � ε, where � denotes an element-wise product and an (aux-
iliary) noise variable ε is sampled fromN (0, I). Modelling the
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Figure 1: The denoising variational autoencoder architecture
for speech enhancement (SE-DVAE).

latent variable in this way allows the KL divergence in (1) to be
integrated analytically, resulting in the following estimator:

L(θ, φ;x) '
J∑

j=1

(1 + log(σ2
zj )− µ

2
zj − σ

2
zj )

−
D∑

i=1

1

2
log(σ2

xi) +
(xi − µxi)2

2σ2
xi

(2)

where J andD are the dimensionalities of z and x, respectively,
and xi is the i-th element of the vector x. µxi and σxi denote
the i-th element of the vector µx and σx. Likewise, µzj and
σzj denote the j-th element of the vector µz and σz. For more
detailed derivation of the above equation, please refer to the
appendix in [11].

2.2. Proposed Architecture

In this work, we present a denoising variational autoencoder
(DVAE) [12] framework that introduces a denoising process in
training the VAE by using noisy-clean speech pairs. The train-
ing procedure is similar to how the vanilla denoising autoen-
coder (DAE) is trained. The input is corrupted according to
some noise distribution and the model needs to learn to recon-
struct the original input (e.g., by maximizing the log-probability
of the clean input x, given the corrupted input x̃). This proce-
dure is akin to the regular VAE except that the input is cor-
rupted.

In [13], the authors show the results of reconstructing the
filter-bank features using VAE and AE. It is clear that VAE re-
constructs better than AE. The VAE preserves the clearer har-
monic structure and spectral envelope, while the AE provides
more blurred results. This motivated us to apply the DVAE to
speech enhancement instead of the DAE which is employed in
the conventional joint learning approach.

The structure of the speech enhancement DVAE (SE-
DVAE) is shown in Figure 1. The encoder takes a noisy speech
feature x̃ as input and predicts 64-dimensional mean µz and
log-variance log(σ2

z) that parametrize the posterior distribution
qφ(z|x̃). The decoder takes sampled z as input, and predicts the
mean µx and the log-variance log(σ2

x) that parametrize the con-
ditional likelihood pθ(x|z). As in the case of z, the enhanced
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(a) (b) (c)

VAD

𝒚𝒑𝒓𝒆𝒅 𝒚𝒑𝒓𝒆𝒅 𝒚𝒑𝒓𝒆𝒅

Figure 2: Three types of proposed joint learning methods: (a)
JL-DVAE-1, (b) JL-DVAE-2, and (c) JL-DVAE-3. The dotted
boxes represent the SE-DVAE architecture which is shown in
the Figure 1. The thick arrows indicate the input of the SE and
VAD network.

feature x ∼ pθ(x|z) is reparametrized as x = µx + σx � ε
using the reparameterization trick.

The encoder and decoder DNNs both consist of two hidden
layers of 2048 units. All the hidden layers use ReLU activations
and no activation function is applied to Gaussian parameter lay-
ers. In order to guarantee a stable optimization of the DVAE,
we put a constraint on the value of log(σ2

xi) to be greater than
a certain threshold α. This is because if σ2

xi of Eq. (2) is close
to zero, the DVAE loss (which is the negative variational lower
bound) becomes close to infinity. We solve this problem by
using the shifted ReLU with activation f(x) = max(x, α) for
log(σ2

xi). We set α to -9, which makes σ2
xi greater than or equal

to 10−4. The SE-DVAE is fed with 21 consecutive frames and
predicts 21 consecutive frames of enhanced features.

Batch normalization (BN) and dropout are used at every
hidden layers except for the Gaussian parameter layers. As dis-
cussed in Introduction, it is known that BN has a great effect
on the joint learning. When we jointly train the architecture, the
output distribution of the SE network (i.e., the input distribution
of the VAD network) changes significantly during the training
process. This problem called internal covariate shift makes it
difficult to train the entire networks. The VAD module would
have to deal with an input distribution that is non-stationary and
unnormalized. Thanks to BN, we are able to reduce internal co-
variate shift, especially at the boundary between two modules,
and effectively train the whole network without pre-training.

3. Joint Learning
A joint DNN is built by concatenating an SE-DVAE and a VAD-
DNN. Here, we propose three kinds of joint learning methods as
shown in Figure 2 (a), (b), and (c). The input to the SE-DVAE
is the noisy features x̃, surrounded by a context window. To
reconstruct the corresponding clean features x, the SE-DVAE
is trained on parallel x̃ and x to minimize the SE loss which
is the negative variational lower bound. The VAD-DNN is fed
by the enhanced feature (shown in Figure 2 (a)), latent code z
(shown in Figure 2 (b)), or both of them (shown in Figure 2 (c))
from the SE-DVAE. After that, the VAD-DNN makes a frame-
wise binary speech / non-speech prediction ypred and is trained
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to minimize the cross entropy criterion. The input is batch nor-
malized before feeding into the VAD-DNN. The VAD-DNN has
2 hidden layers, each of which has 2048 units with ReLU acti-
vations. Like the SE-DVAE, we apply BN and dropout to every
hidden layers. The joint learning procedure can be summarized
as follows:

1. Compute the loss functions at the output of the SE-
DVAE and the VAD-DNN.

2. Compute the cost gradients using backpropagation.

3. Update the parameters of the SE-DVAE and the VAD-
DNN.

In step 2, the VAD gradient is also back-propagated through
the SE-DVAE. Therefore, the parameter updates of the SE-
DVAE depend not only on the SE cost function but also on the
VAD cost function, as shown below:

θSE ← θSE − α1 ∗ [gSE + λgV AD] (3)

In Eq. (3), θSE are the parameters of the SE-DVAE, gSE are the
SE cost gradients with respect to θSE , while gV AD are the VAD
cost gradients with respect to θSE . Finally, λ is a hyperparam-
eter which weights gV AD and α1 is the learning rate for θSE .
Since the enhancement process is partly guided by the VAD cost
function, the front-end would hopefully be able to provide the
enhanced feature which is more suitable and discriminative for
the subsequent VAD task. The parameter updates of the VAD-
DNN only depend on the VAD cost function, as shown below:

θV AD ← θV AD − α2 ∗ gV AD (4)

In Eq. (4), θV AD are the parameters of the VAD-DNN, gV AD
are the VAD cost gradients with respect to θV AD , and α2 is the
learning rate for θV AD . Notice that gV AD in Eq. (4) differs
from gV AD in Eq. (3).

4. Experimental Setup
4.1. Datasets

We used clean utterances of the Aurora4 database [14] which
contains 7138 continuous speech utterances for training and 330
utterances for testing. To construct the 35 hours training set, all
the 7138 utterances of the clean training set were used. The
utterances of the Aurora4 corpus are short and around 80% of
which are speech; this may introduce a bias when comparing
the distributions of speech and non-speech. To reduce this ef-
fect, one second of silence were inserted at the begining and the
end of the utterance, which makes the ratio of speech frames
around 60%. The clean speech corpus was corrupted by the
public 100 noise types 1 at SNR levels varying in -5dB, 0dB,
5dB, 10dB, 15dB, 20dB. For the test data, all the 330 utterances
of the clean utterances were used. They were corrupted by four
unseen noises (babble, factory, destroyer-engine and F16 cock-
pit noise) in the NOISEX-92 noise corpus [15] at four low SNR
levels : -5dB, 0dB, 5dB, 10dB. We applied Sohn VAD [1] to
the clean speech corpus and the results were used as labels of
the corresponding noisy corpus. This method was proved to be
sufficiently reasonable to generate labels [16].

1web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html
The noise types (100) : Crowd (17), Machine (12), Alarm and siren
(14), Traffic and car (3), Animal sound (9), Water sound (14), Wind (9),
Bell (4), Cough (3), Clap (1), Snore (1), Click (1), Laugh (3), Yawn (2),
Cry (1), Shower (1), Tooth brushing (1), Footsteps (1), Door moving
(2), Phone dialing (1). In parenthesis is the number of distinct noise
files.

4.2. Features

The features used are 32-dimensional multi-resolution cochlea-
gram (MRCG) features, surrounded by a context of 10 past
frames and 10 future frames. MRCG features were first pro-
posed for a speech separation problem [17] and later employed
for a VAD task [18]. For all models used in our experiments,
delta and delta-delta coefficients are appended to create 96-
dimensional features, which is the same setting as in [16].

4.3. Optimization

All models are trained using Adam optimizer with a mini-batch
size of 512. The learning rates α1 and α2 start from 10−5 and
10−6 respectively. When the validation performance does not
increase after one epoch, learning rates decrease to half. All the
weights of the networks are initialized with Xavier initialization
in [19]. We use a constant dropout rate of 0.2. The gradient
weighting factor λ in Eq. (3) is set to 0.1.

5. Results
5.1. Comparison among different approaches

Table 1 lists the results of six different methods for the four
unseen noises with different SNRs. The area under the ROC
curve (AUC) [20] is adopted as the evaluation metric. The val-
ues in bold indicate the best results among all compared meth-
ods under each condition. Here we consider three baseline ap-
proaches (DNN, JL-DNN and JL-DAE) and the three proposed
approaches (JL-DVAE-1, JL-DVAE-2 and JL-DVAE-3).

DNN denotes the conventional DNN-based VAD without
joint learning scheme. It has the same network structure as our
proposed VAD-DNN architecture in Section 2.2.

JL-DNN denotes the conventional denoising autoencoder-
based joint learning approach which was proposed in [5]. In
this method, after training the SE-DNN and VAD-DNN sepa-
rately, we concatenate them and jointly train the whole network.
Among the various configurations in the paper, we choose JT-
DNN with 2+2 configuration (2 hidden layers for the SE-DNN
and 2 hidden layers for the VAD-DNN with 2048 hidden nodes)
without post-processing. We follow the same training proce-
dure used in [5].

To compare the DVAE with the DAE, we replace the DVAE
with the DAE in JL-DVAE-1 approach (which we refer to as
JL-DAE). JL-DAE has the same structure as our proposed JL-
DVAE-1 except for the two Gaussian parameter layers, which
are replaced by fully-connceted layers of 64 and 2016 units,
respectively. JL-DVAE-1 is shown in Figure 2 (a) where the
VAD-DNN is fed by the enhanced feature. JL-DVAE-2 and JL-
DVAE-3 are illustrated in Figure 2 (b) and (c), respectively.

As can be seen in the table, DNN shows lower performance
than other five joint learning-based VADs in all noise condi-
tions, especially at low SNRs. JL-DNN, which shows the low-
est performance among all the joint learning methods, provides
1.9% relative improvement over DNN at SNR = -5 dB on av-
erage for all noises. These results indicate that the speech en-
hancement front-end is beneficial for the VAD task.

By comparing JL-DNN and JL-DAE, we observe that JL-
DAE performs better than JL-DNN in almost all noise con-
ditions. JL-DAE provides 0.5% relative improvement over
JL-DNN at SNR = -5 dB on average for all noises. Even
though both are denoising autoencoder-based joint learning ap-
proaches, their structures and learning methods are different.

JL-DVAE-1 provides 1.1% relative improvement over JL-
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Table 1: AUC (%) comparison between the conventional approaches and the proposed joint learning approaches.

Noise SNR DNN JL-DNN JL-DAE JL-DVAE-1 JL-DVAE-2 JL-DVAE-3

Babble

-5 85.92 87.78 88.38 89.15 88.72 89.85
0 93.99 94.00 94.58 94.87 94.68 95.10
5 97.12 97.14 97.46 97.39 97.22 97.52

10 98.02 98.29 98.35 98.30 98.28 98.34
Avg. 93.76 94.30 94.69 94.93 94.73 95.20

Factory

-5 77.43 81.08 82.27 83.95 83.68 84.22
0 87.50 90.16 91.25 91.29 91.26 92.75
5 94.95 95.19 96.26 95.96 95.68 96.78

10 97.31 97.26 97.75 97.41 97.30 97.49
Avg. 89.29 90.92 91.88 92.15 91.98 92.81

Destroyer
engine

-5 92.85 93.07 93.24 94.01 93.38 94.12
0 96.53 96.60 96.93 96.72 96.42 96.81
5 97.37 97.96 97.85 97.57 97.50 97.64

10 98.05 98.46 98.29 98.43 98.32 98.46
Avg. 96.20 96.52 96.58 96.68 96.41 96.76

F16
cockpit

-5 90.67 91.43 91.20 92.04 91.31 92.14
0 95.51 96.14 96.06 96.14 96.11 96.20
5 97.20 97.69 97.73 97.62 97.60 97.71

10 97.84 98.27 98.25 98.25 98.23 98.30
Avg. 95.30 95.88 95.81 96.01 95.81 96.09

Table 2: AUC (%) comparison of the three proposed joint learn-
ing methods on average for all noise types.

SNR JL-DVAE-1 JL-DVAE-2 JL-DVAE-3
-5 89.79 89.27 90.08
0 94.76 94.62 95.21
5 97.13 97.00 97.41
10 98.10 98.03 98.15

Avg. 94.95 94.73 95.21

Table 3: AUC (%) comparison with and without batch normal-
ization for JL-DVAE-3.

SNR λ = 0 λ = 0.1
no BN with BN no BN with BN

-5 87.56 89.47 88.12 90.08
0 93.01 94.81 93.09 95.21
5 96.33 97.14 96.50 97.41

10 97.14 98.12 97.37 98.15
Avg. 93.51 94.89 93.75 95.21

DAE at SNR = -5 dB on average for all noises. These results
indicate that we can achieve better performance by replacing the
DAE with the DVAE for speech enhancement, especially in very
low SNR conditions. As we expected in Section 2.2, we can see
that the DVAE performs better than the DAE for reconstructing
the clean features. To summarize, our proposed approach (JL-
DVAE-1) shows higher performance than the baselines. Both
JL-DVAE-2 and JL-DVAE-3 will be discussed in Section 5.2.

5.2. Comparison among the proposed approaches

Table 2 compares the results of three proposed approaches on
average for all noise types. The results show that JL-DVAE-1
achieves higher performance than JL-DVAE-2 in all conditions
and JL-DVAE-3 is consistently better in all conditions achieving
0.3% and 0.5% relative improvement (averaging the four SNR
levels) compared to JL-DVAE-1 and JL-DVAE-2, respectively.

This implies that the enhanced feature and the latent rep-
resentation z from the SE-DVAE complement each other and
using those two features together is better than using only the
enhanced feature. The learned latent representation z captures
the factors that result in the variability of speech segments, such
as the content being spoken, speaker identity, and environment.
[13]. This would provide additional information to the VAD-
DNN, which is useful to discriminate speech and non-speech.

5.3. Impact of batch normalization

Table 3 shows the impact of batch normalization (BN) on the
joint learning. It is clear that BN is particularly helpful as ex-
plained in Section 2.2. When the gradient weighting factor λ
in Eq. (3) is set to zero, JL-DVAE-3 with BN provides 1.5%
relative improvement over JL-DVAE-3 without BN on average
over all SNR levels. Likewise, when the gradient weighting fac-
tor λ is set to 0.1, JL-DVAE-3 with BN provides 1.6% relative
improvement over JL-DVAE-3 without BN on average over all
SNR levels.

5.4. Impact of the gradient weighting

The impact of the gradient weighting on the joint learning is
shown in Table 3 as well. As explained in Section 3, the param-
eter updates of speech enhancement depend on the VAD cost
function (if λ is not zero). We compare the two cases, λ = 0.1
and λ = 0. When the batch normalization is applied, JL-DVAE-
3 with λ = 0.1 provides 0.3% relative improvement over JL-
DVAE-3 with λ = 0 on average over all SNR levels. Likewise,
when the batch normalization is not applied, JL-DVAE-3 with
λ = 0.1 provides 0.3% relative improvement over JL-DVAE-3
with λ = 0 on average over all SNR levels.

6. Conclusions
This study was motivated by the result that VAD tasks are chal-
lenging in very low SNR. To overcome this problem, we em-
ployed a denoising variational autoencoder-based joint learn-
ing with batch normalization and the gradient weighting. We
showed that our joint learning method performs better than
the conventional denoising autoencoder-based joint learning
method. As for the future work, we will focus on enabling joint
learning without paired noisy-clean training data.
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