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Abstract
Semantic frame parsing is a crucial component in spoken
language understanding (SLU) to build spoken dialog systems.
It consists of two main tasks: intent detection and slot
filling. State-of-the-art deep learning models have demonstrated
good results on these tasks. However, these models require
not only a large scale annotated training set but also a
long training procedure. In this paper, we aim to alleviate
these drawbacks for semantic frame parsing by utilizing the
ubiquitous user information. We design a novel progressive
deep neural network model to incorporate prior knowledge of
user information intermediately to better and quickly train a
semantic frame parser. Due to the lack of benchmark dataset
with real user information, we synthesize the simplest type
of user information (location and time) on ATIS benchmark
data. The results show that our approach leverages such simple
user information to outperform state-of-the-art approaches by
0.25% for intent detection and 0.31% for slot filling using
standard training data. When using smaller training data, the
performance improvement on intent detection and slot filling
reaches up to 1.35% and 1.20% respectively. We also show that
our approach can achieve similar performance as state-of-the-
art approaches by using less than 80% annotated training data.
Moreover, the training time to achieve the similar performance
is also reduced by over 60%.
Index Terms: Spoken Language Understanding, User
Information Augmentation, Progressive Neural Networks

1. Introduction
With the emergence of artificially intelligent voice-enabled
personal assistants in daily life, spoken language understanding
(SLU) system has attracted increasing research attentions. As
the key component in a SLU system, semantic frame parsing
aims to identify user’s intent and extract semantic constituents
from a natural language utterance, a.k.a. intent detection
and slot filling. Existing approaches includes the independent
models for learning intent detection [1, 2] and slot filling
[3, 4, 5, 6, 7, 8] separately as well as joint models to learn these
two tasks together [9, 10, 11, 2].

Unfortunately, the aforementioned approaches suffer from
several main drawbacks. First, they require the existence of a
large scale annotated corpus to train a high quality parser. Since
a SLU system aims to understand all varieties of user utterances,
the corpus is further required to extensively cover all varieties of
utterances. However, the collection of such an annotated corpus
is very expensive and needs heavy human labor. Secondly, the
training of existing parser models oftentimes takes a long time
to achieve a good performance. These drawbacks are magnified
especially with the recent quick growth of capabilities in
personal assistants [12]. To develop a new domain, we need
to generate a new utterance dataset and take a long time to

train a new semantic frame parsing model. Thus, it is critically
desirable to design a new semantic frame parsing model to
alleviate the needs of both large amount of annotated training
data and long training time.

In this paper, we investigate how user information can
be incorporated into semantic frame parsing to overcome the
above drawbacks. We design a novel progressive attention-
based recurrent neural network (Prog-BiRNN) model that first
annotates the information types and then distills the related
prior knowledge w.r.t. each type of information to continue
learning intent detection and slot filling. Our approach
is motivated by the recent success of attention-based RNN
model [2] for joint learning of intent detection and slot filling
and progressive neural networks [13] in many multi-tasking
learning applications. Our model includes a main RNN
structure stacked with a set of different layers and they are
trained one by one in a progressive manner.

Organization: Section 2 describes the background and
related work. We discuss our new problem definition in Section
3. Section 4 includes our proposed model and its training
procedure details. We show the experimental results in Section
5. Section 6 concludes the whole paper.

2. Background & Related Work
2.1. Semantic Frame Parsing

Intent detection and slot filling are two main tasks to build
a semantic frame parser for spoken language understanding
(SLU). That is, the goal of semantic frame parsing is
to understand all varieties of user utterances by correctly
identifying user’s intents and slot tags. Given an input utterance
as a sequence x of length T , intent detection identifies the intent
class I for x and slot filling maps x to the corresponding label
sequence y of the same length T (Table 1).

Intent detection is treated as an utterance classification
problem, which can be modeled using conventional classifiers
such as support vector machine (SVM) [1] and RNN based
models [2]. As a sequence labeling problem, slot filling
can be solved using traditional machine learning approaches
including maximum entropy Markov model [3] and conditional
random fields (CRF) [14], as well as recurrent neural network
(RNN) based approaches which takes and tags each word in an
utterance one by one [4, 5, 6, 7, 8]. Recent research focuses on
the joint model to learn two tasks together [9, 10, 11, 2].

2.2. Joint Attention-based RNN Model

We recall the state-of-the-art approach in [2], referred to as Att-
BiRNN model, which will be used as the base of our approach.
Att-BiRNN is a joint RNN model to learn the two tasks together.
It first uses a bidirectional RNN with a basic LSTM cell to read
the input utterance as a sequence x. At each time stamp t, a
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context vector ct is learned to concatenate with the RNN hidden
state ht, i.e., ct ⊕ ht, to learn a slot attention for predicting
the slot tag yt. All hidden states of slot filling attention layer
are used to predict the intent label in the end. The objective
function of Att-BiRNN model is as follows:

P (y|x) = max
θr,θs,θI

T∏

t=1

P (yt|y1, . . . , yt−1,x; θr, θs, θI) (1)

where θr, θs, θI are the trainable parameters of different
components (utterance BiRNN, slot filling attention layer and
intent classifier) in Att-BiRNN model.

3. Problem Definition
We propose the User Info Augmented Semantic Frame Parsing
problem for the same two tasks, intent detection and slot filling,
by considering the following additional inputs.
User Info Dictionary: This defines the categorical relations
between user info type and slots. In other words, each key
in the dictionary is a type of user info and its corresponding
value is the slots belonging to this type. The generation of
this dictionary is not the focus of our paper since it can be
simply generated by a software developer when he generates
slots during the development of a new domain in practice.

Each type of user info is associated with an external
or pre-trained model to extract their semantically meaningful
prior knowledge. For example, the semantics of a location is
represented by its longitude and latitude such that the distance
between two locations reflect their actual geographical distance.
User Info for Each Utterance: Each input sequence x is
associated with its corresponding user info U . U is represented
as a set of tuples, 〈Info Type, Info Content〉. As an example
utterance in Table 1, the first gray row shows our generated user
info with type “User Location” and content “Brooklyn, NY”.
Learning user info has been well studied, such as user
contextual information (e.g., time, location, activity, etc.) via
smartphone [15], Internet of Things [16] and user interests (e.g.,
favorite food, etc.) using recommendation models [17].
Remarks: One may argue that this is a simple extension of
semantic frame parsing problem in which the user info can
be simply encoded into an existing model as a new input or a
new state. However, these naive approaches ignore the different
semantic meanings between user info and language context in
an utterance, as well as between different types of user info.
Thus, as we later show in experiment (Section 5), these baseline
approaches do not show any advantage over existing approaches
without user info.

4. Proposed Approach
In this section, we describe the main idea and details of our
proposed Prog-BiRNN model as well as its training procedure.

4.1. Progressive Attention-based RNN Model

As the name indicates, our main idea is to train the semantic
frame parsing model progressively with an intermediate task
before achieving the final goal of intent detection and slot
filling. This is motivated by the recent success of progressive
neural networks [13]. Specifically, for each utterance x,
we first define the user info sequence z using the user info
dictionary. In Table 1, the last row shows the user info sequence
corresponding to this example. Our approach first trains a
user info tagging to derive z. Then, the prior knowledge with
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Figure 1: Progressive Attention based RNN Model

semantic meaning for each type of user info is distilled into the
model to continue training for intent detection and slot filling.

Table 1: ATIS corpus sample with intent and slot annotations
with additional user info and its corresponding user info
sequence (in gray)

utterance (x) round trip flights between ny and miami

slots (y) B-round trip I-round trip O O B-fromloc O B-toloc

intent (I) atis flight

user info (U ) {“User Location” : “Brooklyn, NY”}
user info seq (z) O O O O B-loc O B-loc

As shown in Figure 1, our proposed Prog-BiRNN model
is designed based on the state-of-the-art Att-BiRNN model [2],
which consists of the following four main components.
Utterance BiRNN Layer: We use the same bidirectional RNN
(BiRNN) to encode an utterance with LSTM cells (BiLSTM)
as in [2]. The hidden state ht at each time step t is the
concatenation of forward state fht and backward state bht, i.e.,
ht = fht ⊕ bht.
User Info Tagging Layer: This component labels the user
info type for each word in the input utterance. Since the
labeling is based on the language context of input utterance, we
follow the previous work [2] to use a language context vector
ct at each time stamp t via the weighted sum of all hidden
states {hk}∀1≤k≤T i.e., ct =

∑T
k=1 αt,khk. Here, αααt =

softmax(et), i.e., αt,j =
exp(et,j)∑T

k=1
exp(et,k)

. et,k = g(sut−1,hk)

is also learned from a feed forward neural network g with the
previous hidden state sut−1 defined as the concatenation of ht−1

and ct−1, i.e., sut−1 = ht−1 ⊕ ct−1. At each time step t, the
user info tagging layer outputs Pu(t) as follows:

Put = softmax(Wusut ); z̃t = arg max
θu

Put (2)

Slot Filling Layer: This is the key layer for distilling user info
into the model to help reduce the need of annotated training
data. It shares the same hidden state ht and language context ct
with the user info tagging layer. For each word in the utterance,
we use external knowledge to derive the prior distance vectors
dt = {dt(1), . . . ,dt(|U |)} for each time stamp t (green in
Figure 1) where |U | is the number of user info types in IOB
format. And each element djt is defined as follows:

dt(j) = sigmoid
(
βββ(j)� δδδt(j)

)
(3)

where � stands for element-wise multiplication. βββ(j) is a |U |
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dimensional trainable vector; and δδδt(j) is the distance between
the tth word and user info w.r.t. the prior knowledge of type j.

Next, we define the calculation of distance δt(j) for each
info type j at time stamp t, through the example in Figure 1. Let
δt(loc) be the distance w.r.t. the location type of user info. It is
a one-dimensional scalar in this case. Taking the second word
“NY” as an example, we have its following location distance
since it is tagged as “Location” type of user info:

δ2(loc) = dist(“NY”, “Brooklyn, NY”) ≈ 4.8 (miles)
by using external location based services, i.e., Google Maps
Distance Matrix API [18]. If the word and user info are of
different types, we set the distance δt(j) as -1 such that its
corresponding dt(j) will be close to 0 via the sigmoid function.

To feed the prior distance vectors dt into the slot filling
layer, we weight each element dt(j) and the language context
ct over the softmax probability distribution Put from the user
info tagging layer. Intuitively, this determines how important
a type of user info or the language context in utterance is to
predict the slot tag of each word in the utterance. Thus, we have
the input ΦΦΦt of LSTM cell at each time step t in slot filling layer
as follows:

ΦΦΦt = Put (1)dt(1)⊕ · · · ⊕ Put (|U |)dt(|U |)⊕ POt ct (4)
where Put (j) and POt stand for the probability that the tth word
is predicted as j type of user info and as “O” meaning none of
the types. Note that we will discuss how to deal with IOB format
in Section 4.2.2. At last, the state sst at time step t is computed
as ht ⊕ΦΦΦt and the slot tag is predicted as follows:

P st = Wssst ; ỹt = arg max
θs

P st (5)

Intent Detection Layer: We add an additional intent detection
layer as in [2] to generate the probability distribution PI of
intent class labels by using the concatenation of hidden states
from slot filling layer, i.e., sI = ss1 ⊕ . . .⊕ ssT .

P I = softmax(WIsI); Ĩ = arg max
θI

P I

Remarks: The sharing of hidden state ht and language context
ct between user info tagging and slot filling layers is crucial to
reduced the required annotated training data. For the user info
tagging layer, ht, ct are mainly used to tag the words which
belong to one type of user info. The semantic slots of these
words can be easily tagged in slot filling layer by utilizing the
distilled prior knowledge instead of using ht, ct again. The
slot filling then depends on ht, ct to tag the rest of words not
belonging to any type of user info.

4.2. Progressive Training with IOB Format Support

4.2.1. Training Algorithm

The training procedure is progressively conducted step by step.
The first step is to train user info tagging component with loss
function Lu as follows:

Lu(θr, θu) , − 1

n

|U|∑

i=1

n∑

t=1

zt(i) logPut (i) (6)

where |U | is the number of user info types in IOB format.
Then, we train the slot filling layer with loss function Ls

and intent classifier with loss function LI simultaneously. In
the meanwhile, we also allow the fine tuning of parameters θr
and θu in utterance BiRNN and user info tagging layers.

Ls(θr, θI , θs, θu) , − 1

n

|S|∑

i=1

n∑

t=1

yt(i) logP st (i) (7)

LI(θr, θI , θs, θu) , −
|I|∑

i=1

I(i) logP I(i) (8)

where |S| is the number of slots in IOB format and |I| is the
number of intents. P (i) stands for the probability P (X = xi).
Moreover, θr, θu, θs, θI are the parameters in utterance BiRNN,
user info tagging, slot filling and intent detection components in
our proposed Prog-BiRNN model.

4.2.2. Details of IOB Format Support

Thanks to the progressive training procedure, the IOB format
will be naturally supported in our model. As shown in Figure
2, in the case of “New York” with “B-loc I-loc” user info tags,
we take them together to extract the prior geographical distance
dist(“New York”, “Brooklyn, NY”). Moreover, since B-loc and
I-loc are considered as different tags in the output Put of user
info tagging component, they can be directly used to infer B-
fromloc and I-fromloc in slot filling component accordingly.

In the case that the type of user info for the tth word is
incorrectly tagged, the hidden state ht and language context ct
will be used to infer the slot tags since the user info tagging
output Put will weight more on ht, ct in this case. In addition,
the second phase of training procedure for joint training of all
components also leans to use more language context to correct
the incorrectly tagged type of user info.

New York…

B-fromloc I-fromloc

B-loc I-loc

𝐡1 𝐜1

𝛿1(loc)=𝛿2(loc)
=dist(NY, Brooklyn, NY)

Slot
Filling

…

𝐡2 𝐜2
𝐝1 𝐝2

User
Info

Tagging

Figure 2: Support of IOB Format (omitted other model details)

Remarks: The capability of prior knowledge distillation in
our approach leverages user information to largely improve
the performance and reduce the requirement of annotated
training data. Moreover, the overall training time is also
largely shortened since our approach divides SLU into simpler
subproblems in which each subproblem is much easier to train.

5. Experimental Evaluation
5.1. Dataset

We evaluate our approach on the ATIS (Airline Travel
Information Systems) dataset [19], a widely used dataset in
SLU research. The training set contains 4,978 utterances from
the ATIS-2 and ATIS-3 corpora, and the test set contains 893
utterances from the ATIS-3 data sets. There are 127 distinct
slot labels and 22 different intent classes.

Due to the lack of benchmark datasets with user info,
we design the following two mechanisms to synthesize two
types of user info, user contextual location and user preferred
time periods in ATIS dataset. We first construct the user
info dictionary by including all slots with ”loc” keyword in
contextual location and including all slots with ”time” keyword
in user preferred time period.

The prior distance δδδ of contextual location are computed
using Google Maps Distance Matrix API [18]. For time period,
we calculate δδδ by using the difference between the tagged time
stamp in an utterance and the middle time stamp of the user
preferred time period.
Contextual Location: W.l.o.g., we synthesize user contextual
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Table 2: Examples of synthesized user info in ATIS dataset

Utterance User Info
Type Content

i need a flight from dallas to san francisco
{“fromloc.city name”: “dallas”} contextual location Fort Worth,TX

all flights to baltimore after 6 pm
{“depart time.time”: “6 pm”}

preferred
depart period evening

i want to fly from boston at 838 am and
arrive in denver at 1110 in the morning
{“fromloc.city name”: “boston”}
{“arrive time.time”: “1110”}

{“arrive time.period of day”: “morning”}

contextual location

preferred
arrive period

Cambridge,MA

morning

locations based on the intuitive assumption that user’s location
is usually close to flight depart city. We first extract all
values (real locations) of slots which contains ”fromloc” in their
names. Then, for each real location, we use Google Places API
[20] to find the nearby cities within 50 km. For each utterance
having slots containing ’fromloc’, we add the nearby city of this
slot value as its location. When there are more than one nearby
cities, we randomly select one from them.
Preferred Time Periods: We follow Oxford dictionary to
consider four periods of a day: morning (6am-12pm), afternoon
(12pm-6pm), evening (6pm-12am), night (12am-6am). In each
utterance having the slots with ”time” keyword, we generate
one depart and one arrive time preference by selecting from
these four periods as follows: If there is a slot containing
’depart time’, we set the preferred time period based on
the value of this slot. For example, if the slot value is
“8pm”, we set the preferred time period to be “evening”
since “8pm” belongs to the period 6pm-12am. For the slot
’depart time.period of day’, we simply match the key words to
synthesize the user preferred depart time period. We synthesize
the arrive period preference in the same way.

5.2. Baseline Competitors & Implementation Details

In addition to the state-of-the-art baseline Att-BiRNN in [2],
we also design another baseline competitor using user info as
discussed at the end of Section 3. For the sake of fairness, we
consider concatenating the user info directly to the input of slot
filling layer in the Att-BiRNN. All user info is concatenated
together without distinguishing different types. We call these
two baselines Att-BiRNN with/without User Info respectively.

Also, we follow the exact same hyperparameters in the
original paper of the base Att-BiRNN model [2] since our model
does not have additional hyperparameters.

5.3. Results with Different Sizes of Training Set

We evaluate our Prog-BiRNN model on subsets of full size
ATIS training set and randomly sampled 3 different sizes
(2,000, 3,000 and 4,000) utterances out of the total 4,978
utterances. Figure 3 reports the average performance results on
10 differently sampled training set of each size.

Since location related slots are the majority of all slots in
ATIS dataset, we first consider only using contextual location
as user info. As shown in Figure 3a, the F1 score of slot
filling outperforms both baseline approaches with around 0.2%
absolute gain of each size. The accuracy improvement of
intent detection is around 0.1% and up to 0.2% for full size
training set. This slightly smaller improvement margin is
due to the small number of intent classes. When using both
contextual location and preferred time period as user info, we
observe more significant improvement with 0.25% gain for
intent detection and 0.31% gain for slot filling. Note that
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Figure 3: Performance results with different sizes of training set

our reported intent detection accuracy is different from that
in baseline paper [2] since we use all 22 intents in ATIS
dataset. In particular, when using smaller training data, i.e.,
2000 training data, the performance improvement on intent
detection and slot filling reaches 1.35% and 1.20% respectively.
More significantly, our Prog-BiRNN model can use less than
4000 (80%) annotated utterances with simple user location
and preferred time period as training data to achieve the
performance of baseline approaches for both intent detection
and slot filling.

5.4. Training Time Results

We also report the training time between our Prog-BiRNN and
baseline approaches. Since our approach mainly focuses on
improving slot filling, Figure 4 reports the averaged slot filling
F1 score after each epoch of training. Thanks to the small
number of user info types, the first user info tagging training
phase only takes 3 epochs to achieve over 92% accuracy, which
is sufficient for the second training phase. As one can see,
the number of epochs (3 epochs included) takes to achieve
a competitive performance of slot filling is around over 60%
smaller than both two baseline approaches.
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Figure 4: Training time results on full size training set using
both contextual location & preferred time periods as user info

6. Conclusion
We present a novel progressive neural network model to
train a semantic frame parsing model by incorporating user
information. By using simple user information, we show that
our approach not only significantly improves the performance
but largely reduces the needs of annotated training set as well.
In addition, our approach also shows its ability to shorten the
training time for achieving the competitive performance. Thus,
we enable the quick development of a semantic frame parsing
model with less annotated training set in new domains.
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