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Abstract

Automatically detecting koalas in the real-life environment

from audio recordings will immensely help ecologists, conser-

vation groups, and government departments interested in their

preservation and the protection of their habitat. Inspired by the

success of deep learning approaches in various audio classifi-

cation tasks, in this paper, the feasibility of recognizing koa-

las’ calls using a convolutional recurrent neural network archi-

tecture (CNN+RNN) is studied. The benefit of this architec-

ture is twofold: firstly, convolutional layers learn local time-

frequency patterns from the audio spectrogram and secondly,

recurrent layers model longer temporal dependencies of the ex-

tracted features. In our datasets, the performance of CNN+RNN

is evaluated and compared with standard convolutional neural

networks (CNNs). The experimental results show that hybrid

CNN+RNN architecture is beneficial for learning long-term

patterns in spectrogram exhibited by koalas’ calls in unseen

conditions. The proposed method is also applicable for de-

tecting other animal calls such as bird sound where it achieves

87.46% area under curve score on the bird audio detection chal-

lenge evaluation data.

Index Terms: koalas’ call, deep learning, convolutional recur-

rent neural network, sound classification, constant Q transform

1. Introduction

The implications of expanding urbanization in many parts of the

world are affecting biodiversity. In South East Queensland, for

example, increasing human population density was identified

as the main factor in the decline of populations of koalas (Phas-

colarctos cinereus) [1, 2]. A recent Australian Senate inquiry

(Commonwealth of Australia, 2011) recommended the imple-

mentation of habitat mapping to assist in the management of

koalas, highlighting the need for reliable distribution models for

this species. To monitor wildlife, ecologists often use acoustic

sensors as an effective approach to collect data at large spati-

otemporal scales. The recorded acoustic data provide the me-

ans for ecologists to identify particular species and to conduct

species-richness surveys based on the animals’ mating calls in

their habitat. In order to perform classification tasks from re-

cordings, trained professionals need to listen to a large batch of

recordings over many hours. Therefore, tools which help to au-

tomatically identify koalas’ calls can improve the efficiency of

monitoring.

Automatic detection of animal vocalizations, such as ma-

ting calls and birdsong, has been the subject of intensive rese-

arch over decades. Recently, bioacoustics or ecoacoustics [3],

has become one of the “big data” research areas. With the proli-

feration of high-quality acoustic sensors (i.e., microphones) that

can be mounted on smartphones and robots, an ever-growing

quantity of recordings is being generated, far more than can fe-

asibly be analyzed manually. Detecting bird sounds in audio

recordings is one example of such remote monitoring projects.

Bird species are good indicators of environmental health and ea-

sily detectable by sound rather than by vision [4]. The use of de-

tection and classification of other animals, such as frogs [5, 6],

bats [7], and marine mammals [8], using acoustic recordings

has also been studied extensively for the conservation of natural

ecosystems.

A variety of machine learning techniques have been explo-

red for automatic detection of animal vocalizations from acou-

stic recordings. Typically, acoustic features are extracted from

waveform envelopes or spectrograms into representations that

best characterize the signal. These features can be broadly ca-

tegorized into temporal and spectral features that summarize

the content of ecological interest. For example, Towsey et

al. [9] extract fourteen acoustic indices, with varying degrees

of correlation with bioacoustic activity, which are relevant for

determining bird species richness in audio recordings. These

acoustic indices, along with features derived from spectrogram

images, are also used to detect and classify frog calls [10].

Other techniques for detection are based on energy threshol-

ding, spectrogram cross-correlation, and Hidden Markov Mo-

dels (HMMs), which are widely-employed in bioacoustic soft-

ware (SongScope, XBAT, Raven) [4].

Recently, deep learning techniques have revolutionized the

applicability of machine learning in speech, vision, and text pro-

cessing. A large volume of data is usually required for trai-

ning high-dimensionality models using deep neural networks,

which have many hidden layers and millions of parameters,

in order to achieve state-of-the-art classification accuracy. In-

deed, ecoacoustics research may benefit substantially from “big

data” analysis by applying deep learning models for detection

and classification tasks. For example, the winning entry in

the BirdCLEF [11], a yearly contest on methods for bird-

species identification, was based on deep convolutional neural

networks (CNNs). Also, several top-performing systems em-

ployed CNNs as solutions in the bird audio detection challenge

2017 [4] which deal with the estimation of the presence/absence

of bird sounds in short-duration recordings [12, 13, 14].

In this paper, we investigate the feasibilty of recognizing

koala calls using deep learning architectures. Male koala calls

consist of a single repeating or oscillating element with a se-

ries of inhalations and exhalations at lower frequencies lasting

for 30 seconds or more [15]. Structurally similar calls are ob-

served in female koala calls [16]. Specifically, we propose a

combined convolutional and recurrent neural networks (RNNs)

architecture for this task. The main idea of this integration is

to use CNNs as a feature extractor and recurrent layers to mo-

del the long-term dependencies. Similar combined CNN+RNN

architectures have also been proposed in automatic speech re-

cognition [17], speaker verification antispoofing [18], as well

as music classification [19]. Our research led us to extracting

features using the constant Q transform (CQT), a perceptually-
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inspired approach to time-frequency analysis, which captures

low frequency at higher frequency resolution.

This paper is organized as follows. Section 2 presents re-

lated works. Section 3 presents datasets, feature extraction

method, and deep learning architecture proposed in this study.

Section 4 and 5 describe the experimental setup and results.

This is followed by conclusions in Section 6.

2. Relation to prior works

Compared to the traditional machine learning (ML) techniques,

the use of CNNs eliminates the need for feature extraction

which is the most important and time-consuming part of de-

tection and classification tasks. However, in practice, the au-

tomatic feature learning approach (i.e., train using raw audio as

input in order to autonomously discover feature representations)

does not outperform the system trained on mid-level represen-

tation of audio (e.g., spectrogram) [20].

CNNs differ from traditional networks by learning filters

that are shifted in both frequency and time by making the ex-

plicit assumption that the input data is an image. However,

it lacks longer temporal context information which is benefi-

cial for processing patterns with temporal characteristics. This

shortcoming is addressed by integrating CNNs for local feature

extraction and RNNs into a single network to learn the temporal

information of the extracted features [21].

3. Data and Methods

3.1. Datasets

Koala males emit loud bellows during the breeding season, and

this behavior can be used for estimating occupancy [22]. The

raw acoustic data were collected from 63 sites from Willi Willi

National Park in New South Wales (NSW) during night-time.

At each site, one SongMeter (SM2 Wildlife Acoustics) is de-

ployed to record koala bellows. The koala calls are considered

to be detectable by SongMeters at up to at least 100 m. The raw

acoustic data (recorded at a 22,050 Hz sampling rate) are then

annotated with the presence or absence of koalas. In total, we

used about 3.6 hours of annotated koala calls as positive exam-

ples and more than seven hours of other audio clips as negative

examples (e.g., noise, crickets, frog and bird calls, vehicles) in

datasets. We created a uniform six-second-long audio clip from

the dataset in order to generate input features. This produces

2181 and 4337 clips for the positive and the negative classes,

respectively. The datasets are split into a training and a test set

in the proportion of 80% and 20%, respectively.

Time and frequency shifts were applied as data augmenta-

tion techniques to artificially enlarge the training dataset to re-

duce overfitting. For the time shift, the spectrogram is cut into

two parts by a small random amount in time for the second part

and the second part is placed in front of the first. Concerning

the frequency shift, a small shift in spectra (4 bins) is applied.

3.2. Feature extraction

The constant Q transform employs geometrically spaced fre-

quency bins with Q-factors (ratios of the centre frequencies to

bandwidth) are all equal across the entire spectrum [23]. This

results in the time-frequency signal representation with hig-

her frequency resolution at lower frequencies while providing a

higher temporal resolution at higher frequencies. The Fourier-

based approaches on the other hand, lack frequency resolution

at lower frequencies and lack temporal resolution at higher fre-

Figure 1: Diagram of CNN+RNN architecture for koala de-

tection. The output of recurrent layer is followed by a fully

connected (FC) layer and a final classification softmax layer.

quencies due to the increasing Q-factor when moving from low

to high frequencies. Note that the CQT is essentially a wavelet

transform with high Q factors [24].

First, the audio signal is downsampled with an anti-aliasing

filter to one twelfth of the original sampling rate (1,837 Hz).

Hence, fmax, the highest frequency analyzed, set to half of the

new sampling rate (918 Hz). The transform is computed with

fmin, the lowest frequency analyzed, set to 124 Hz, and central

frequencies given by fk = fmin · (2 1
b )k, using the technique

described in [25]. In our approach, we use a total number of

104 bins, with the setting of b = 36 bins per octave. Following

the CQT, the spectrogram is converted into a log scale,

Spectrogram(t, ω)|dB = 20 log10(|XCQ(t, ω)|) (1)

with the six second duration audio clip resulting in 208 CQT

frames. The noise-reduction procedure can be optionally ap-

plied, for example, by subtracting the median value computed

for each spectral band in a spectrogram from every frame. The

CNNs input data should have a unified form, hence the input

feature shape for spectrogram is 104× 208.

3.3. Models

The CNN architecture consists of 3 convolutional layers. We

use a receptive field of 3× 3 followed by a max pooling opera-

tion for every convolutional layer. Rectified linear unit (ReLU)

is used as an activation function. Dropout is employed in con-

volutional layers with rate 0.5 to address overfitting. Xavier

initialization is used for convolutional layers [26]. The activati-

ons from the filters of the last convolutional layers are stacked

over the frequency axis and fed to the LSTM (Long short-term

memory) layer, a special RNN structure to avoid exploding gra-

dients problem. The feature maps at the output of the CNN

are formulated as a 3D tensor, where 26 is the number of time

steps mapped from the 208 time steps in the original spectro-

gram. Thus, 26 recurrent layers should be constructed in the
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Type Filter/Stride Output #Params

Conv1 3 x 3 / 1 x 1 104 x 208 x 32 320

MaxPool1 4 x 2 / 4 x 2 26 x 104 x 32 -

Conv2 3 x 3 / 1 x 1 26 x 104 x 64 18K

MaxPool2 4 x 2 / 4 x 2 7 x 52 x 64 -

Conv3 3 x 3 / 1 x 1 7 x 52 x 128 73K

MaxPool3 4 x 2 / 4 x 2 2 x 26 x 128 -

LSTM - 64 82K

FC1 - 64 4K

FC2 - 2 130

Total 177K

Table 1: Proposed CNN+RNN architecture. The data shape in-

dicates frequency × time × number of filters.

Type Filter/Stride Output #Params

Conv1 3 x 3 / 1 x 1 104 x 208 x 32 320

MaxPool1 4 x 2 / 4 x 2 26 x 104 x 32 -

Conv2 3 x 3 / 1 x 1 26 x 104 x 64 18K

MaxPool2 4 x 2 / 4 x 2 7 x 52 x 64 -

Conv3 3 x 3 / 1 x 1 7 x 52 x 128 73K

MaxPool3 4 x 2 / 4 x 2 2 x 26 x 128 -

FC1 - 1024 6.8M

FC2 - 2 2K

Total 6.9M

Table 2: CNN architecture. The data shape indicates frequency

× time × number of filters.

Figure 2: Detecting koalas from false-color spectrogram.

RNNs. We apply recurrent networks with 64 LSTM cells. The

RNN (many-to-one configuration) output is followed by fully

connected layers. The combined CNN and RNN are optimi-

zed jointly by employing backpropagation algorithm. Figure 1

depicts CNN+RNN architecture used in this study.

A softmax layer with two nodes is used (one for the koalas

and one for non-koala). The network is trained using Adam

optimizer [27] with momentum of 0.9, learning rate of 10−3,

and a batch size of 32. The binary cross-entropy is used as a loss

function. Tensorflow [28, 29] is used to implement the models.

In this paper, we compare the CNN+RNN implementation with

a standard CNN baseline. Table 1 and 2 show CNN+RNN and

CNN architectures in details, respectively.

4. Experiments

4.1. Evaluation metric

The koala call detection system is evaluated from the recei-

ver operating characteristic (ROC) using area under the curve

(AUC) measurement. One important advantage of CNNs is the

ability to learn local filters from input patches. When it comes

to audio spectrogram data, filter dimensions correspond to time

and frequency. Thus, by varying filter shape, in other words, by

making it wider or higher, the network can be adjusted to le-

arn the time dependencies and the frequency context separately.

While this is not in the scope of this work, the hyperparameters

for the final network configuration were obtained empirically,

as shown in Table 1 and 2.

4.2. Baseline CNN

The benefits of using a recurrent layer after the convolutional

layers and training a CNN for use as a baseline was investigated.

Instead of a recurrent layer, after the last convolutional layer,

Models AUC AP

CNN+RNN 0.9909 0.988

CNN 0.9908 0.988

Table 3: AUC scores and average precision (AP) scores on tes-

ting dataset.

the feature maps are flattened and then connected to the fully

connected layers in a standard CNN.

5. Results

All models (CNN+RNN and baseline CNN) are evaluated using

five-fold cross validation, with a single fold held out as a test set

for each round of validation, while the remaining folds are used

as training data. The reported results in Table 3 are the average

values of the test score across three separate cross-validation

runs. The network weights are initialized using a different seed

for each run. Overall, the results from the CNN+RNN and CNN

models were comparable in terms of performance. While over

99% AUC was obtained, the trained models are useless if they

perform poorly in recordings come from different locations.

To evaluate the performance of the classifiers when de-

tecting koalas in different acoustic soundscape, one hour night-

time recordings from a specific site were obtained. The audio

signal was first segmented into overlapping 6-second clips (50%

overlap). The posterior probabilities of the target class (koalas)

from the network output are used as the prediction/confidence

scores of the classifiers (after smoothing using a median filter).

Typically, these posteriors are used to make the decision (ko-

alas or non-koalas) by comparing them with a fixed threshold.

Figure 3 and 4 show the scores over the one-hour recording pro-

duced by the CNN+RNN and standard CNN models, respecti-

vely. The ground-truth predictions, which were ten koalas in

total (plotted in red line), were obtained by a trained expert lis-

tener. Overall, both the CNN+RNN and CNN models can pre-

dict a koalas call with a high level of confidence (e.g., > 0.5, in

practice the threshold should be determined by ROC curve ana-

lysis). However, the standard CNN model struggled at the start

of the audio clip, due to the noise created by an airplane flying

overhead, and both the CNN+RNN and CNN models missed

the third koala counted from the right (at 44:20), as its faint

calls were masked by the noise made by a low flying airplane.

Visual inspection using a false-color spectrogram [30] is

used in Figure 2 to show koala-based activity at around minutes

45:00 and 46:30. These koalas were detected by the classifiers

with a high level of confidence, as shown in Figure 3. Note

that most non-koala segments were detected with very low con-

fidence values (almost zero) by CNN+RNN. Similar findings

were also observed for the CNN+RNN model when detecting

2109



0:00 2:30 5:00 7:30 10:00 12:30 15:00 17:30 20:00 22:30 25:00 27:30 30:00 32:30 35:00 37:30 40:00 42:30 45:00 47:30 50:00 52:30 55:00 57:30 60:00

time [minutes:seconds]

0

0.2

0.4

0.6

0.8

1

ou
tp

ut
 p

os
te

rio
r 

w
.r

.t.
 th

e 
ko

al
as

' c
al

l m
od

el ground-truth

prediction

Figure 3: Output posterior w.r.t. the koalas’ call model over the one-hour recording produced by CNN+RNN.
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Figure 4: Output posterior w.r.t. the koalas’ call model over the one-hour recording produced by CNN.
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(a) original spectrogram.
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(b) heat map.
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(c) reconstruction from layer one.

Figure 5: Example of the positive class.

different koala population in South East Queensland (values are

not reported in this paper due to restricted-use data). This was

not the case for CNN, where the background noise clips produ-

ced relatively higher scores compared to CNN+RNN. Since the

input to a CNN model is an audio spectrogram, choosing one

filter shape over another will potentially impact both learning

time and frequency features at the same time. As small squa-

red (3 × 3) filters were used, the CNN model learnt localized

patterns that were constrained by the size of the filters that were

represented in the sub-band for a short-time. Thus, it was diffi-

cult for the CNN model to capture long temporal dependencies

due to the use of these small squared filters [31]. This suggests

that CNN+RNN is able to generalize over koala sounds in dif-

ferent environments even though the difference in performance

is minimal for the testing data.

To identify the features that the network was learning from,

a map of the test samples were computed to highlight the parts

of the spectrogram that were important for the prediction of a

koalas call. To compute the map, a small part of the image,

which formed a 8×8 block, was occluded by setting its intensity

to 0. The difference between the probabilities for the whole

image and the occluded one indicates the contribution of the

occluded part for classification [32, 33]. This procedure was

repeated by applying a sliding block with no overlap to occlude

a small part of the image. Figure 5.b. shows this map, which

can be interpreted as a heat map, with the hot (yellow) pixels

contributing more to feature classification than the cold (blue)

pixels. We also used the deconvolutional method [32, 34] to

project the activations from the feature space to the input space

to reveal relative importance of the input pixels for the observed

activations (Figure 5.c.). Results show that there is a strong

activity in the frequency bands (i.e., 230Hz-459Hz) occupied

by the koala’s call.

The deep learning architecture developed for detecting ko-

ala’s call can also be used for other application such as bird

activity detection. Using the bird audio detection task [4], the

AUC scores for CNN+RNN and CNN methods obtain 87.46%

and 83.57% on the unseen evaluation data (scoring server on-

line: http://lsis-argo.lsis.org/scores), respectively. For this task,

the input feature is the spectrogram derived from the short-time

Fourier transform instead of CQT.

6. Conclusion

This paper investigates deep learning techniques for detecting

a koalas call based on combined CNN and RNN architectures

by following best practices from literature. It is shown that a

CNN+RNN framework is the preferred solution for detecting

koala calls in the wild. The proposed method can also be used

to detect other animal calls such as bird sound with a superior

performance compared to the standard CNN. In future work,

we will investigate how to incorporate domain knowledge for

designing the network architecture, and to inspect what filters

are learning.
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