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Abstract

Neural network architectures such as long short-term memory
(LSTM) have been proven to be powerful models for process-
ing sequences including text, audio and video. On the basis of
vanilla LSTM, multi-modal attention mechanisms are proposed
in this paper to synthesize the time and semantic information of
input sequences. First, we reconstruct the forget and input gates
of the LSTM unit from the perspective of attention model in the
temporal dimension. Then the memory content of the LSTM
unit is recalculated using a cluster-based attention mechanism
in semantic space. Experiments on acoustic scene classification
tasks show performance improvements of the proposed meth-
ods when compared with vanilla LSTM. The classification er-
rors on LITIS ROUEN dataset and DCASE2016 dataset are re-
duced by 16.5% and 7.7% relatively. We get a second place in
the Kaggle’s YouTube-8M video understanding challenge, and
multi-modal attention based LSTM model is one of our best-
performing single systems.

Index Terms: acoustic scene classification, multi-modal atten-
tion, long short-term memory

1. Introduction

Sequence modeling problem has been the core issue for a great
variety of sequence classification tasks. These tasks get a se-
quence as the input and output labels or targets of the sequence.
Sequences can be a series of words in many natural language
processing (NLP) applications such as name entity recognition,
sentence classification and machine translation. Sequences can
also be a sequential audio signal in audio processing domain
such as speaker recognition, speech emotion classification and
acoustic scene classification. In the field of acoustic scene clas-
sification [1][2], audio frames can be formulated as sequences.
The primary objective of sequence modeling problem is to learn
the vector representations of input sequences.

Long short-term memory (LSTM) model [3] is a
frequently-used solution for sequence modeling and has shown
significant improvement on text classification [4], acoustic
scene classification [1] and video understanding[5]. In this pa-
per, we follow the implementation described in [6] to imple-
ment our vanilla LSTM unit. For a standard LSTM model, it
composes every frame in a sequence from the beginning to the
end, and then give a final vector representation of the input se-
quence. LSTMs are explicitly designed to solve the long-term
dependency problem. But for some intricate sequences espe-
cially in audio, the memory in LSTM models is not that credi-
ble, we also need to identify salient memory content to supple-
ment to the final vector representation.

Attention mechanism is first introduced in machine trans-
lation task [7]. This mechanism is designed to take care of the
positions of input sequences according to previous output. For

sequence classification tasks, Shen [8] utilized the similarity be-
tween the final output vector of an LSTM model and the em-
bedding vectors of the input sequence to calculate the attention
weights, and then a weighted sum of all the embedding vec-
tors is used as the representation of the input sequence. In [9],
the author used the similarity between the final output vector
of an LSTM model and the convolutional outputs of a convo-
lutional neural network (CNN) model to make attention-based
pooling over the convolutional outputs. Both of them used a
LSTM model to get a global representation of input sequence,
and then gave more attention to the embedding vectors or con-
volutional outputs when they were more similar to the global
representation.

In this paper, we expand our previous work [10] and pro-
pose two different attention mechanisms on the basis of the
vanilla LSTM. In the temporal dimension, the forget and input
gates are reconstructed using the low-rank second order associ-
ation between the temporal input and the previous hidden state,
and then the final output vector presentation is replaced with
a weighted sum of the output sequence, where the weights are
calculated using a softmax layer of the gate values along the
temporal dimension. Inside the LSTM unit, the weighted sum
of difference vectors between the temporal input and its corre-
sponding cluster center is stored as the memory content, where
the weights are calculated using a softmax layer of the newly
proposed cluster gates in semantic space and the cluster centers
are learned jointly with the LSTM.

The rest of this paper is organized as follows: The proposed
attention mechanisms are described in details in Section 2. The
performance of proposed methods are compared on audio clas-
sification task and video classification task in Section 3 and Sec-
tion 4. Sec.5 is the conclusion of our task.

2. Multi-modal attention mechanisms in
LSTM

2.1. Preliminary: LSTM

In this section, we briefly describe the vanilla LSTM structure
in [6]. The input audio can be represented as a sequence of
vectors X1..7 = {@1,@2,...,xr}. T is the audio length and
the dimension of each vector « can be labeled as M, which is
determined by the audio feature extraction methods. Let h; be
an N-dimensional hidden state in timestep t. Let Ly, ,,, : R" —
R™ be a biased linear mapping z — Wz + b for some W and
b. The symbol ® represents element-wise multiplication. Then
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the LSTM can be described as following equations:
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The structure of LSTM allows it to learn the long-term de-
pendencies easily. The long-term memory is stored in a vector
of memory cell ¢; € R", the short-term memory is another
vector c_in Eq.1. As a practice, the final hidden state is utilized
to represent the whole audio sequence.

2.2. Temporal Attention Mechanism

Not all frames in a sequence are equally informative for se-
quence classification tasks. For acoustic scene classification
task, audio fragments that are too quiet or noisy contribute little
to the audio theme. From the perspective of attention model,
the vector representation of the whole audio sequence can be
computed as a weighted sum of the hidden states h; as Eq.2, ax
represents the contribution of each audio frame to the final vec-
tor representation v. In this section, we introduce the temporal
attention mechanism [7] to calculate ;.

T
v = E atht
t=1

In LSTM unit described as Eq.1, the input vector x; and
the previous hidden state h;_1 are used to decide when to keep
or override information in the memory cell, which is closely
related to the saliency of audio frames. Thus a softmax layer of
x; and h;_; can be used to calculate o as Eq.3, where ¢ is an
attention function R*Y — R that calculates an un-normalized
alignment score between x; and hy_1.

(€3
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In our attention model, we use a function of the form
g(xe,hi—1) = (Wyxy, Wyhy_1), where the matrices W,
and W}, are used to transform a; and h:—; into a represen-
tation of the same size. Thus the temporal attention LSTM unit
can be modified as Eq.4. In this LSTM version, the input gate
i¢ and the forget gate f; become scalers, the attention function
gt is represented as a weighted summation of i; and f;.
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Compared with the vanilla LSTM unit in Eq.1, the number
of trainable parameters in Eq.4 reduces by about a half, which
makes the optimization procedure faster. From the value of g,
we can get the saliency of each audio frame to the audio theme.

2.3. Semantic Attention Mechanism

The memory mechanism inside vanilla LSTM structure in Eq.1
can be decomposed into an equivalent representation as Fig.la.
Among all trainable parameters, L+ v 3n are utilized to cal-
culate 4;, o; and f; to determine the final memory cell ¢; and
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output vector h;. Other parameters L 4+ n, v can be marked as
the local memory inside each LSTM cell. During test time, cur-
rent input &+ and previous hidden state h;_; are compared with
the local memory matrix line by line, these similarities are then
connected into an instant memory vector and participate in later
calculations. This memory mechanism will lead to the conver-
gence of the local memory to be a subset of the input vector
space and result in the overfitting problem.

Bag-of-features (BOF) is popular for indexation and cate-
gorization applications because these vector representations can
be compared with standard distances, and subsequently, be used
by robust classification methods. Inside the LSTM unit, we at-
tempt to reconstruct the memory content c_ inspired by the BOF
theory [11][12]. As shown in Fig.1b, we first define the lo-
cal memory as a codebook ¢ = {d1,da, ...,dn} of N cluster
centers of audio frames. Each audio frame @ is associated to
its nearest cluster center d; = NN (x¢, (). From the idea of
VLAD [11], we use the difference x; — d, as the distribution
of the frame with respect to the cluster center. This representa-
tion of instant memory is different from the similarities used in
Fig.1a.

However, when we integrate this feature representation and
the LSTM unit together, the procedure of computing the near-
est cluster center d; is not differentiable. In order to modify
the LSTM unit using BOF theory, we propose to mimic VLAD
in the LSTM unit and design a trainable memory cell to store
the audio frames with VLAD representations. To construct a
memory cell amenable to training via backpropagation, we first
replace the non-differentiable N N (z¢, ) with a weighted sum-
mation of all cluster centers as Eq.5. When «; is a one-hot
vector, this representation is equivalent to the original VLAD

definition.
N
d; = Z o, e dy;
k=1

Inspired by the attention theory, the assignment o+ can be
computed using a softmax layer of «; and h:—1, and the mem-
ory cell ¢_in Eq.1 can be replaced using the difference x: — d;
as Eq.6. In this LSTM unit, Ly v, ~ is a biased linear map-
ping where each row corresponds to the trainable parameters for
each cluster k. ( is the trainable codebook, & is the row index
in codebook . W, is the matrice that transform x: into the
semantic space spanned by the codebook (.

(&)
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The number of trainable parameters in Eq.6 keeps pretty
much the same with Eq.1, which makes the training process of
this new LSTM unit as easy as the vanilla LSTM.

3. Acoustic Scene Classification
Experiments

In this section, we employ LITIS ROUEN dataset [13] and
DCASE2016 dataset [14] to conduct acoustic scene classifica-
tion experiments.

Details of these datasets are listed as follows.
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Figure 1: Memory mechanism in LSTM.

- LITIS ROUEN dataset: This is the largest publicly avail-
able dataset for ASC to the best of our knowledge. The
dataset contains about 1500 minutes of acoustic scene
recordings belonging to 19 classes. Each audio record-
ing is divided into 30-second examples without overlap-
ping, thus obtain 3026 examples in total. The sampling
frequency of the audio is 22050 Hz. The dataset is pro-
vided with 20 training/testing splits. In each split, 80%
of the examples are kept for training and the other 20%
for testing. We use the mean average accuracy over the
20 splits as the evaluation criterion.

- DCASE2016 dataset: The dataset is released as Task 1
of the DCASE2016 challenge. We use the development
data in this paper. The development data contains about
585 minutes of acoustic scene recordings belonging to
15 classes. Each audio recording is divided into 30-
second examples without overlapping, thus obtain 1170
examples in total. The sampling frequency of the audio
is 44100 Hz. The dataset is divided into 4 folds. Our ex-
periments obey this setting, and the average performance
will be reported.

3.1. Audio Pre-processing

For both datasets, the audio signal is transformed to frames us-
ing Short-time Fourier Transform with a frame length of 1024
and a frameshift of 220, the number of frequency filters is set
to be 64. For both datasets, the examples are 30 seconds long.
In the data preprocessing step, we first divide the 30-second ex-
amples into 1-second clips with 50% overlap. Then each clip
is processed using LSTM model. The classification results of
all these clips will be averaged to get an ensemble result for
the 30-second examples. Some ASC systems benefited from
using shorter windows or a higher number of frequency filters,
whereas in our case, this configuration is a trade-off between
effectiveness and performance.

3.2. Hyper-parameters and Evaluation

In acoustic scene classification tasks, we use the number of
LSTM cells as 128, LSTM layers as 1, the learning rate of
0.001, I5 weight is 1e™*, training is done using the Adam [15]
update method. The outputs of LSTM models are followed by
a deep neural network where the network architecture can be
summarized as 128 x 128 x 19(15). The attention size of tem-
poral attention LSTM in Eq.4 is 64, the codebook dimension

3330

of semantic attention LSTM in Eq.6 is 128. For DCASE2016
dataset, we set dropout rate as 0.5. All these methods are
stopped after 100 training epochs.

In order to compute the results for each training-test split,
we use the classification error over all classes. The final classi-
fication error is its average value over all splits.

3.3. Results of Attention Mechanisms

Table 1 is the comparison of performance on both datasets after
100 training epochs. On LITIS Rouen dataset, LSTM struc-
ture performs much better than other algorithms such as CNN,
deep neural network (DNN) and Nonnegative Matrix Factor-
ization (NMF). The proposed temporal and semantic attention
LSTM models show improvements when compared with vanilla
LSTM. When we integrate these two attention mechanisms,
our approach performs significantly better than the state-of-
the-art result and obtains a classification error of 2.12%. On
DCASE2016 dataset, LSTM is the worst model when compared
with CNN, DNN and NMF. However, this phenomenon does
not affect our conclusions. We also get consistent performance
improvements with both attention mechanisms. As discussed
in Section 2, the increase in performance is not at the cost of
increasing the number of parameters.

Table 1: Acoustic scene classification results using different
attention mechanisms. TA represents the temporal attention
method. SA represents the semantic attention method.

[ Model | LITIS Rouen (%) | DCASE2016 (%) |
vanilla LSTM 2.54 274
LSTM+TA 245 26.6
LSTM+SA 2.38 25.6
LSTM+TA+SA 2.12 253
RNN-Gam [1] 34 -
CNN-Gam [2] 4.2 -
MFCC-GMM [14] - 275
DNN-CQT [16] 3.4 219
Sparse-NMF [16] 5.4 17.3
DNN-Mel [17] - 23.6
CNN-Mel [18] - 24.0

Validation curves on both datasets are shown in Fig.2. Af-
ter 100 training epochs, experiments on DCASE2016 dataset
encounter severe overfitting problem, experiments on LITIS
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Figure 2: Validation curves on both datasets.

ROUEN dataset has almost converged. For DCASE2016
dataset, the curves show that there is no obvious improvement
with temporal attention mechanism, but the results with seman-
tic and integrated attention mechanisms are consistent with Ta-
ble 1. For LITIS ROUEN dataset, all results are consistent with
Table 1.

4. Video Classification Experiments

In this section, we apply the multi-modal attention mechanisms
to a large-scale video dataset YouTube-8M [5]. The dataset con-
sists of about 7 million YouTube videos that were annotated
with a vocabulary of 4716 tags from 24 diverse categories. The
dataset is used in the YouTube-8M video understanding chal-
lenge conducted on Kaggle'. In the competition, the dataset is
divided into three parts. The training set, validation set and test
set contains 4.9, 1.4 and 0.7 million samples respectively.

4.1. Video Pre-processing

As described in [5], Google has pre-processed the videos and
extract the frame-level image and audio features using state-
of-art deep models. They first decode each video at 1 frame-
per-second up to the first 360 seconds. Then the decoded im-
age frames are fed into the publicly available Inception network
[19] trained on ImageNet [20]. The ReLu activation of the last
hidden layer is fetched and followed by the PCA and quantiza-
tion operation. Finally, each image is converted into a 1024-
dimensional feature vector. The audio frames are fed into the
network trained in [21], following with the same operations as
images. So each audio is converted into a 128-dimensional fea-
ture vector. Thus we use the frame-level 1152-dimensional im-
age and audio feature vectors as the input sequences in this task.

4.2. Hyper-parameters and Evaluation

In video classification task, we use the number of LSTM cells
as 1024, LSTM layers as 1, learning rate of 0.001, I weight
is 1e~8, training is done using the Adam update method. The
outputs of LSTM models are followed by a Mixture-of-Expert
[22] classification model where the number of mixtures is 8.
The attention size of temporal attention LSTM in Eq.4 is 64,
the codebook dimension of semantic attention LSTM in Eq.6 is
1024.

In this task, the performance is evaluated using Global Av-
erage Precision (GAP) at 20. This metrics is calculated as fol-
lows. For each video, the most confident 20 label predictions
are selected along with the confidence values. The tuples of the
form {video, label, con fidence} from all the videos are then
put into a long list sorted by confidence values. This list of pre-

lvisit https://www.kaggle.com/c/youtubeSm
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dictions is then evaluated with the Average Precision (Eq.7), in
which p(z) is the precision and r(¢) is the recall given the first ¢
predictions.

N

AP = " p(i)Ar(i)

1=1

N

4.3. Results of Attention Mechanisms

In this section, experiments with temporal and semantic atten-
tion mechanisms are carried out separately.

Table 2 shows the results. Vanilla LSTM model described
in Sec.2.1 get GAP of 0.8080 on the test part of YouTube-
8M dataset, and the best result on the validation set is reached
when the LSTM model has been trained for 5 epochs. The
proposed temporal and semantic attention LSTM models show
significant performance improvements when compared with the
vanilla LSTM. Specifically, semantic attention mechanism per-
forms a little better than temporal attention mechanism on both
GAP and convergence speed. When these two attention mech-
anisms are integrated, the GAP metrics reaches 0.8172 and the
best result on the validation set is reached only after 3 epochs.

Table 2: Video classification results using different attention
mechanisms.

Performance
Model M@l [ GAD Convergence Speed
vanilla LSTM 0.8631 | 0.8080 5 epochs
LSTM+TA 0.8668 | 0.8152 4 epochs
LSTM+SA 0.8687 | 0.8163 3 epochs
LSTM+TA+SA | 0.8702 | 0.8172 3 epochs

5. Conclusions

In this work, we propose two different attention mechanisms to
modify the vanilla LSTM in sequence classification tasks. The
temporal attention method is able to pick out salient frames and
produce a better expression for an input sequence. The semantic
attention method solves the overfitting problem caused by the
memory mechanism in LSTM cells. For acoustic scene clas-
sification task, the attention based LSTM structures show con-
sistent performance improvements when compared with vanilla
LSTM. On LITIS ROUEN dataset, our approach is able to per-
form significantly better than the state-of-the-art result, and ob-
tains a relative reduction of 16.5% on classification error. On
DCASE2016 dataset, LSTM model is not the best performing
structure, but we also get a relative reduction of 7.7% on classi-
fication error when compared with vanilla LSTM. As a supple-
mentary experiment, we achieve a performance improvement of
1.1% on YouTube-8M video dataset.

We plan to apply attention based LSTM model to other se-
quence modeling tasks such as text and speech. And intuitively,
we think the position of tokens in the sequence also carries use-
ful sequence information, more investigation will be conducted
on this aspect.
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