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Abstract 

Deep neural network (DNN) based DOA estimation (DNN-
DOAest) methods report superior performance but the 
degradation is observed under stronger additive noise and room 
reverberation conditions. Motivated by our previous work with 
an acoustic vector sensor (AVS) and the great success of DNN 
based speech denoising and dereverberation (DNN-SDD), a 
unified DNN framework for robust DOA estimation task is 

thoroughly investigated in this paper. First, a novel DOA cue 
termed as sub-band inter-sensor data ratio (Sb-ISDR) is 
proposed to efficiently represent DOA information for training 
a DNN-DOAest model. Second, a speech-aware DNN-SDD is 
presented, where coherence vectors denoting the probability of 
time-frequency points dominated by speech signals are used as 
additional input to facilitate the training to predict complex 
ideal ratio masks. Last, by stacking the DNN-DOAest on the 
DNN-SDD with a joint part, the unified network is jointly fine-

tuned, which enables DNN-SDD to serve as a pre-processing 
front-end to adaptively generate ‘clean’ speech features that are 
easier to be correctly classified by the following DNN-DOAest 
for robust DOA estimation. Experimental results on simulated 
and recorded data confirm the effectiveness and superiority of 
our proposed methods under different noise and reverberations 
compared with baseline methods. 

Index Terms: direction-of-arrival estimation, speech denoising 
and dereverberation, deep neural network, joint adaptive 
learning, acoustic vector sensor 

1. Introduction 

Direction of arrival (DOA) estimation of acoustic sources with 
a microphone array of small size has drawn much attention due 

to its low cost, compact physical size and possible wide-range 
applications such as service robots [1]. Among them, Acoustic 
Vector Sensor (AVS) is a promising candidate [2], since an 
AVS contains one pressure sensor and two or three orthogonal 
velocity sensors that are collocated at a point geometry in space, 
and has a smaller size but provides more directional information 
[3]. The AVS based DOA estimation algorithms could be traced 
back to the early 1990s, where two DOA estimators based on 

the intensity and velocity-covariance were firstly proposed [4]. 
Then many conventional DOA estimation methods had been 
applied to AVS, such as Multiple Signal Classification (MUSIC) 
[5], Estimation of Signal Parameters via Rotational Invariance 
Techniques (ESPRIT) [6, 7], beamforming and Capon [3].  

Though significant progress has been made, DOA 
estimation under noisy and reverberant environment is still a 
challenging task. To improve DOA performance, maximum 
steered response power (MSRP) [8] and maximum likelihood 
(ML) [9] methods were introduced, and the effects of noise and 
reverberation on these DOA estimators have been analyzed. 

Besides, under the assumption that the target speech dominated 
time-frequency points (TD-TFPs) can be extracted based on the 
sparseness of speech signal [10], DOA estimation could be 
improved when performed on TD-TFPs [10-12] or low-
reverberant-single-source (LRSS) zones [13]. However, when 
the noise and reverberation become severe, less reliable TD-
TFPs or LRSS zones can be determined, which causes the 
performance degradation in DOA estimation. 

In recent years, due to the powerful learning ability of deep 
neural network (DNN) for speech techniques [14], in our 
previous work [15], a classification DNN based DOA 
estimation (DNN-DOAest) model was proposed, where the 
inter-sensor data ratios (ISDR) calculated on TD-TFPs are 

employed as effective DOA cues. Experiments show the 
significant improvement of DNN-DOAest approach compared 
with other non-learning based methods. Whereas, we also noted 
that the generalization capability of DNN-DOAest is limited 
since the DOA cues could be corrupted by unseen noise and 
reverberation, especially when noise and reverberation become 
severer. Motivated by the success of the DNN based speech 
denoising and dereverberation (DNN-SDD) serving as a front-

end for other DNN based tasks, e.g., speech recognition [16-18]  
and voice activity detection (VAD) [19], in this work, a unified 
DNN framework is thoroughly investigated for robust speaker 
DOA estimation, which mainly contains the following 
contributions: First, inspired by the widely-used interaural level 
difference (ILD) which considers the sub-band energy for 
effectively inferring the DOA in binaural speech source 
localization [20], we propose to use sub-band ISDRs (Sb-ISDR), 

which are obtained by using ISDRs in each mel-scale sub-band, 
as effective DOA cues to build a DNN-DOAest model trained 
with large scale data synthesized under different noisy and 
reverberant conditions. Second, we present a speech-aware 
DNN-SDD employing the coherence vector [21] that denote the 
probability of time-frequency points (TFP) dominated by 
speech signals as additional input, which facilitates the training 
for prediction of complex ideal ratio masks (cIRM) [22]. Last, 
a unified network is developed by stacking the DNN-DOAest 

on top of the DNN-SDD with a joint part, and trained by a joint 
noise and reverberation adaptive learning strategy, which 
enables the DNN-SDD to adaptively generate denoised and 
anechoic speech features that are easier to be accurately judged 
by the DNN-DOAest for robust DOA estimation. Extensive 
experimental results under different noisy and reverberant 
conditions demonstrate the superiority of our proposed methods. 

2. Data Model  

In this paper, focusing on DOA estimation with small-sized 

microphone array, an AVS is used as acoustic transducer which 
contains one omnidirectional sensor (o-sensor) and two 
orthogonally oriented directional sensors (u-sensor and v-
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sensor respectively) [15]. Then the signal observed by the AVS 
at the discrete time instance t can be modeled as 

( )= ( ) ( ) ( ) ( ) ( )d rt t s t t s t t∗ + ∗ +x h h n   (1) 

where x(t)=[xu(t), xv(t), xo(t)]T represents the received signal at 

u-, v- and o-sensor respectively, the superscript T denotes the 
vector transpose, s(t) is the speech source, hd(t) and hr(t) are 3-
by-1 impulse responses of the direct sound and reflections 
respectively. ∗ denotes the convolution operation and n(t) is 

defined as 3-by-1 noise components. By taking the short-time 
Fourier transform (STFT), Eqn. (1) yields 

( , ) ( ) ( , ) ( ) ( , ) ( , )d rk l k S k l k S k l k l= + +X H H N   (2) 

where l (1≤l≤L) is the frame index and k (1≤k≤K) is the 

frequency bin index, X(k, l)=[Xu(k, l), Xv(k, l), Xo(k, l)]T, Hd(k), 
Hr(k) and N(k, l) are the 3-by-1 STFT coefficient vectors of x(t), 
hd(t), hr(t) and n(t) respectively, S(k, l) is the STFT of s(t). 
Specifically, Hd(k) and Hr(k) can be denoted as [13] 

( ) ( )
q

kk
jjd r q q

q
k e k e

ω τω τ α −−= = ∑H a H a,   (3) 

where τ is the direct-path time delay, ωk  is the kth discrete 

angular frequency, and a=[u, v, 1]T is the manifold vector for 

speech source s(t) with the azimuth ϕ. For single AVS, u=cosϕ 

and v=sinϕ. aq=[uq, vq, 1]T is the manifold vector pointing 

towards the qth reflection component, τ 
q and α q are the time 

delay of the reflection and attenuation due to absorption at 
surfaces of the room. It is obvious that the direct sound 
component contains the true DOA information that can be 
represented by the inter-sensor data ratio (ISDR) [10], which is 
defined at (k, l) as  

( , ) ( , )

( , ) ( , )
( , ) ,u v

o o

X k l X k l

X k l X k l
k l = ℜ ℜ
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p   (4) 

where ℜ (·) denotes the real part of a complex number. In our 

previous work [15], ISDRs calculated on the target speech 
dominated time-frequency points (TD-TFPs) have been proven 
to be the effective DOA cues for building a classification DNN-
DOAest model. However, when noise and reverberation 
become severe, less reliable TD-TFPs can be determined and 
ISDRs will be corrupted [15], leading to the performance 
degradation of DNN-DOAest. Therefore, more reliable DOA 

cues should be investigated. Besides, adding a speech denoising 
and dereverberation module, e.g., DNN-SDD, to enhance 
received signals is a straightforward idea to alleviate the above 
issues, but this module inevitably introduces distortions or 
mismatches which may deteriorate the performance of DNN-
DOAest. An optional strategy is the joint training of the DNN-
DOAest and DNN-SDD for reducing distortions to improve the 
DOA estimation precision, and this strategy is called joint noise 

and reverberation adaptive learning in our study. 

3. Proposed Method 

The proposed DOA estimation flowchart is shown in Figure 1, 
where the training stage can be divided into three steps. First, 
sub-band ISDR (Sb-ISDR) features of noisy and reverberant 
AVS signals are employed as DOA cues to train a classification 
DNN-DOAest model. Second, a speech-aware DNN-SDD is 
trained with log-power spectral (LPS) and coherence vectors as 
input and cIRMs as output. Last, a unified network is developed 
via joint adaptive learning of DNN-SDD and DNN-DOAest. In 

the DOA estimation stage, after the feature extraction of the 
testing AVS signals, with the voting strategy, the DOA 
corresponding to the maximum frequency of occurrence in 

frame-level decisions made by the unified network is judged as 

the final estimated DOA. The details of DNN-DOAest, DNN-
SDD and the unified network are elaborated below. 

3.1. Classification DNN-DOAest  

The DNN-DOAest is a classification DNN where the output 

denotes the posterior probabilities of 360 DOA angles (0o:1o: 
359o). Inspired by the widely-used ILD features that consider 
sub-band energy to infer the DOA in binaural speech source 
localization [20], we propose a Sb-ISDR formulated as follows 

( ) ( )
( ) ( )
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where Cf is the transfer function of the f-th (f=1, 2, …, F) mel-

scaled rectangle filter, and Ωf is the support of Cf. Compared 

with ISDRs calculated on TD-TFPs, Sb-ISDRs omit TD-TFPs 
extraction which is unreliable under severe noise and 
reverberations, and the frequency-based decomposition allows 
the sub-band analysis by exploring local areas that are prone to 
contain more DOA information, which enables Sb-ISDRs to be 
reliable DOA cues. To incorporate more useful cues, the energy 

thresholding based voice activity detection (VAD) [23] is used 
to select the frame containing speech and DOA information. 
Then Sb-ISDRs of the speech-frames are normalized, e.g., for 
lth frame, G(l)={�(
, �) ||�(
, �)||⁄ , f=1,2,…,F}, and utilized 

as the input of DNN-DOAest, where ||·|| denotes the norm of 
a vector. Then, the classification DNN-DOAest is trained by 
minimizing the cross-entropy criterion Ece.  

3.2. Speech-aware DNN-SDD  

The DNN-SDD is a regression model that maps noisy and 
reverberant speech features, e.g., log-power spectral (LPS), to 
their clean versions [24] or ideal/binary ratio mask (IRM/IBM) 
[16]. In our study, the DNN-SDD is designed to simultaneously 
enhance signals of multi-channel of the AVS. Therefore, the 
LPS of u-, v-, o-sensor are cascaded to be the input of DNN-

SDD. Besides, the coherence matrix is employed as additional 
feature. The coherence matrix CM has the same dimension with 
each spectrogram derived from signals of each channel, and the 
element CM(k, l) is calculated via the coherence test [21] 

2
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T
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where T(a,b)(k, l) is (a, b) element of T(k, l), which is the 
covariance matrix calculated across time bins as follow 

1
( ) ( , ) ( , )

2 1

Z
H

z Z

k,l k l z k l z
Z =−

= − −
+

∑T X X   (7) 

where the time shift Z is set to 2 in this paper. The coherence 
value CM(k, l) ranges from 0 to 1 and can be regarded as the 

 

Figure 1: Our proposed DOA estimation flowchart 
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probability of TFP (k, l) dominated by direct sound [21], which 
makes CM similar to IRM and provide complementary 
information. Therefore, the coherence vector at each frame can 
be combined with LPS features as the input vector for training, 
which is termed as speech-aware DNN-SDD training. Besides, 

different from the adoption of multiple adjacent frames as the 
input of DNN-SDD [22], no frame expansion is used in our 
experiments to reduce the complexity of DNN-SDD.  

From Eqn. (5), it is noted that the calculation of Sb-ISDRs 

requires real and imaginary components of STFT of AVS 
signals, thus the cIRM [22] is employed and defined as the 
complex ratio between the STFT of direct and mixing signals  

( , )
( , )

( , )

k l
k l

k l
=

D
M

X
  (8) 

where D(k,l)=Hd(k)S(k,l) is the direct sound in (2). Following 
[22], the real part Mr(k, l) and imaginary part Mi(k, l) of M(k, l) 

are normalized to be in range (-1,1) through the hyperbolic 
tangent operation before training and used as the output of the 
DNN-SDD. Then, the mean-square error Emse is employed as 
the cost function for training.  

3.3. Joint adaptive learning for the unified network 

By stacking the DNN-DOAest on top of DNN-SDD with a joint 
part, a unified network is developed as illustrated in Figure 2. 
Specifically, using the speech-frame features as input, the real 
and imaginary parts of cIRM for u-, v-, o-sensor are estimated 
by the DNN-SDD. At the joint part shown in red in Figure 2, 
the inverse normalization [22] is applied to obtain restored 
masks �� �(�, �) = [����(�, �), ����(�, �), ����(�, �)]� and ��  (�, �) =

[��� (�, �), ��� (�, �), ��� (�, �)]� , which are used to estimate the 
direct sound  

( )ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )r ik l k l j k l k l= +D M M X   (9) 

Then the ‘clean’ Sb-ISDRs are calculated as 
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From Figure 2, it is clear to see that the normalized !�(�) =
{�#(
, �) ||�#(
, �)||⁄ , f=1, 2, …, F} are used as the input of the 
DNN-DOAest. It is noted that the Sb-ISDRs calculation (10) 

can be realized in the real domain, e.g., the first element of 
�#(
, �) can be rewritten as  

2 2

( , ) ( , ) ( , ) ( , )

( , ) ( , )

r r i i
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+
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where Ur(k,l) and Ui(k,l) are the real and imaginary parts of 

∑ %&(�)'��(�, �)(∈*+
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where Xur(k,l) and Xui(k,l) are the real and imaginary parts of Xu(k,l) 

respectively. Or(k,l) and Oi(k,l) are the real and imaginary parts 

of ∑ %&(�)'��(�, �)(∈*+
, and can be derived in a similar manner. 

Therefore, all weights of the unified network can be updated in 
the real domain. In our experiments, a combination of the MSE 
for DNN-SDD and the cross-entropy for DNN-DOAest is used 
as the objective function for joint adaptive learning of the 
unified network 

(1 )
unified mse ce

E E Eλ λ= + −   (14) 

where λ is a constant and set to 0.5 empirically.  

4. Experiments and analysis 

To generate the training data, simulations are conducted in an 

8m×6m×3m room with an AVS located at [4m, 3m, 1.5m]. 
Similar to [13], room impulse responses are generated using the 
image method [25] by varying the reverberation time (T60) at 
0.3s, 0.6s and 0.9s. White Gaussian noise with different signal-
to-noise ratios (SNR) varied from 0dB to 20dB with 5dB 
interval are added to each of three channels. The source is 
placed 1m away from the AVS by changing the DOA from 0o 
to 359o with 1o interval. For each angle, the simulation is 

repeated 3 times. At each time, 1 sentence sampled at 16kHz 
randomly selected from 4620 training sentences of the TIMIT 
dataset [26] is used as the source signal. Besides, the STFTs are 
realized by 512-point fast Fourier transform (FFT) and using 
hamming window of 512 samples, with a 50% overlap between 
neighboring windows. Therefore, the dimension of the input 

and output of DNN-SDD is 1028 (257×4) and 1542 (257×6) 
respectively. Following [24], the DNN-SDD has three hidden 

layers with 2048 units per layer and sigmoid activation function 
is used. For the calculation of Sb-ISDRs, the number of mel-
scaled rectangle filters is set to 40. Thus, the dimension of input 
and output for DNN-DOAest is 80 (40×2) and 360 respectively. 
Additionally, the DNN-DOAest has three hidden layers with 
720 units per layer and tanh activation function is used. The 
RMSProp optimization method [27] is applied with 15 epochs 
for the training of DNN-DOAest, DNN-SDD and the unified 
network with 5e-4, 5e-4 and 1e-6 as the initial learning rate 

halved every 5 epochs, respectively, which are all performed 
using the TensorFlow [28].   

The testing is conducted in both simulation environment 
and real scenario. For simulation environment, the room is 6m

×7m×4m with the AVS located at [3m, 3.5m, 1.5m], and 100 
testing sentences are randomly selected from the TIMIT dataset. 
At each simulation, we randomly choose 1 testing sentence as 
the test source which is 2m away from the AVS. For real 
scenario, experiments are conducted by using the AVS data 

capturing system developed by ADSPLAB [10] in an 8.5m×

3m×5m room with uncontrolled reverberation and background 
noise such as air conditioning and computer servers, and the 
distance between the speaker and the AVS is 1m. The AVS-
ISDR method [10] that implements DOA estimation on ISDRs 

of TD-TFPs, and the AVS-LRSS method [13] that realizes 
DOA estimation on low-reverberant-single-source (LRSS) 

 
Figure 2: Unified network trained with joint noise and 

reverberation adaptive learning 
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zones are taken as baseline methods, where the settings are the 
same as those in [10, 13]. Besides, three proposed systems are 
implemented for performance comparison. The first is the 
DNN-DOAest trained without the DNN-SDD module (denoted 
as AVS-DNN). To show the effectiveness of the coherence 
vector for predicting cIRMs, another two systems are the 

unified network with speech-aware (denoted as AVS-UN-SA) 
and without speech-aware (denoted as AVS-UN) respectively. 
All methods are evaluated by the mean absolute error (MAE) 
and root mean square error (RMSE). 

4.1. DOA estimation under simulation environment 

Table 1 gives the DOA estimation results under different noisy 
conditions by changing the SNR from -5dB to 20dB with 5dB 
interval and fixing the T60 at 0.5s. Under each condition, the 
DOA is varied from 0o to 359o with 1o interval. As the SNR 
increases, the MAE and RMSE of all methods decrease as 
expected, and both lower MAE and RMSE can be obtained by 
AVS-DNN, AVS-UN and AVS-UN-SA, which shows the 
robustness of our proposed systems to noise. It is noted that 

AVS-UN-SA and AVS-UN outperform the AVS-DNN, which 
demonstrates the importance of DNN-SDD module for 
denoising and dereverberation that facilitate the following DOA 
classification by DNN-DOAest module. Besides, the AVS-UN-
SA achieves better performance than the AVS-UN, showing the 
effectiveness of the coherence vector for predicting cIRMs. 

Table 2 presents the accuracy of DOA estimation under 
various reverberant conditions by varying the T60 from 0.2s to 
1.2s with 0.2s interval and fixing the SNR at 5dB. Similar 
results can be observed except for that AVS-ISDR and AVS-
LRSS methods achieve lower error when the T60 is 0.2s. Since 
under the moderate condition, the extraction of TD-TFPs and 

LRSS zones is reliable and accurate, which enables AVS-ISDR 
and AVS-LRSS methods to obtain lower DOA estimation error. 
However, as the T60 increases, our proposed systems 
outperform the AVS-ISDR and AVS-LRSS methods, which 

shows the robustness of our proposed systems to reverberation. 

Compared with the AVS-UN, it is interesting to see that, under 

strong reverberations (e.g., T60≥0.6s), less improvements can 

be obtained by the AVS-UN-SA, as the coherence vector is 
affected by strong reverberations and provides less reliable 
complementary information to predict accurate cIRMs. 

4.2. DOA estimation in a real scenario  

Table 3 illustrates the DOA estimation results in a real scenario, 
where the DOA of the speaker varies from 0o to 315o with 45o 

interval and 5 trials are repeated at each angle. Compared with 
baseline methods, it is observed that the lower MAE is achieved 
by the AVS-DNN, but the RMSE is higher, which means the 
AVS-DNN is not stable enough in the real and complex 
environment. However, it is encouraging to see that the AVS-
UN-SA still offers the best performance with the lowest MAE 
and RMSE followed by AVS-UN, which further validates the 
effectiveness of the DNN-SDD module for enhancing signals 

and the robustness of our proposed DOA estimation systems in 
the real scenario.   

5. Conclusions 

To improve the DOA estimation performance in challenging 
environments with small-sized microphone array, we propose a 
unified network for robust DOA estimation by using an AVS. 
A novel DOA cue of AVS (Sb-ISDR) and coherence vector are 
investigated and employed to train a classification DNN-
DOAest and a speech-aware DNN-SDD separately. Then a 
unified network is developed by stacking the DNN-DOAest on 

the DNN-SDD with a joint component. Via the joint noise and 
reverberation adaptive learning, the DNN-DOAest is able to 
obtain robust DOA estimation under different simulated and 
real noisy and reverberant conditions by using ‘clean’ speech 
features, which are adaptively produced by the DNN-SDD. 
Besides, our proposed systems have the potential to perform 
robust DOA estimation under various noise conditions, 
including directional interferences and non-directional noise, 
which will be studied in our future work. 
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Table 1: MAE/RMSE (o) of different methods under different SNR conditions with T60 fixed at 0.5s 

Methods SNR 

-5dB 0dB 5dB 10dB 15dB 20dB 

AVS-ISDR 17.20/22.76 16.94/22.06 16.86/21.63 15.79/19.01 15.36/18.99 14.34/18.58 

AVS-LRSS 16.46/21.70 12.53/16.03 10.12/14.96 9.52/11.87 8.93/11.69 8.48/10.78 

AVS-DNN 15.71/20.62 10.96/13.86 9.13/11.37 8.78/10.98 8.50/10.79 8.44/10.64 

AVS-UN 13.68/19.23 9.31/11.47 8.33/10.25 7.65/9.68 6.88/8.57 6.91/8.58 

AVS-UN-SA 12.63/18.91 9.28/11.32 7.61/9.28 7.40/9.15 6.85/8.47 6.43/7.91 

 
Table 2: MAE/RMSE (o) of different methods under different T60 conditions with SNR fixed at 5dB 

Methods T60 

0.2s 0.4s 0.6s 0.8s 1.0s 1.2s 

AVS-ISDR 4.96/5.75 10.56/12.90 20.63/26.85 28.41/37.63 33.97/45.63 39.54/53.59 

AVS-LRSS 1.82/2.37 8.98/10.83 14.08/26.18 22.27/38.31 26.39/46.58 34.76/56.51 

AVS-DNN 6.48/8.06 8.10/10.27 9.89/12.88 11.53/14.70 12.65/16.52 13.73/19.07 

AVS-UN 5.55/7.16 7.69/9.58 8.68/11.08 10.33/12.97 11.78/15.41 12.78/17.71 

AVS-UN-SA 5.09/6.73 7.05/8.74 8.41/10.31 9.97/12.35 11.49/14.86 12.60/17.48 

 
Table 3: MAE/RMSE (o) of different methods in real scenario 

Methods MAE RMSE 

AVS-ISDR 9.35 11.55 

AVS-LRSS 9.96 11.75 

AVS-DNN 8.30 12.32 

AVS-UN 6.88 10.28 

AVS-UN-SA 5.68 9.05 
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