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Abstract 
Emotion recognition by machine is a challenging task, but it has 
great potential to make empathic human-machine 
communications possible. In conventional approaches that 
consist of feature extraction and classifier stages, extensive 
studies have devoted their effort to developing good feature 
representations, but relatively little effort was made to make 
proper use of the important temporal information in these 
features. In this paper, we propose a model combining features 
known to be useful for emotion recognition and deep neural 
networks to exploit temporal information when recognizing 
emotion status. A benchmark evaluation on EMO-DB 
demonstrates that the proposed model achieves a state-of-the-
art performance of 88.9% recognition rate. 
Index Terms: emotion recognition, temporal information, deep 
learning, CNN, LSTM 

1. Introduction 
Human-machine speech communication is spreading into our 
daily lives, thanks to recent advances in accurate speech 
recognition and accompanying wide availability of speech 
recognition devices. However, the capabilities of such devices 
are limited to understanding only the word-level content of 
human speech; enabling machines to perceive our emotions 
would help more natural and empathic dialogue in human-
machine interactions. 

Typical speech emotion recognition systems consist of a 
feature extraction stage followed by classification stages. 
Extensive studies have investigated and extracted key features 
relevant to emotion status carried in speech waveforms. In [1], 
a large set of 6373 features, mainly derived from short-time 
waveform segments with sliding windows, is defined. Recently, 
Eyben et al. [2] proposed a minimalistic set of features called 
the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) 
consisting of 62 features, and extended GeMAPS consisting of 
88 features as the baseline for evaluation of future research. 
These features, combined with static pattern classifiers such as 
Support Vector Machine (SVM), demonstrate reasonably good 
performance. 

One of the major problems with the conventional approach 
is that much less effort has been made to make use of how the 
extracted features change over time. Numerous studies in 
psychology support the importance of temporal information of 
the features, where it is demonstrated that the pattern of stress 
and intonation is highly associated with emotion status [3]. A 
common method to employ temporal information in emotion 
recognition systems is to use the standard deviation of the 

sequence of the speech feature vectors and the mean vector to 
produce an input vector to a static classifier. However, this 
method can lead to the loss of key temporal information for 
emotion recognition. For example, a time-reversed version of 
feature vectors results in the same standard deviation as the 
original feature vectors, but they wouldn’t necessarily 
correspond to the same emotion. To overcome this limitation, 
some systems append explicit temporal features to the input 
vector, such as mean and standard deviation of voiced and 
unvoiced speech duration, pseudo-syllable rate, etc. [2]. Yet, 
these features fail to convey all the key temporal information, 
such as multiple patterns of temporal changes of individual 
features spread in different times. 

On the other hand, recent advances in deep neural networks 
(DNN) have demonstrated great success. Convolutional Neural 
Networks (CNN) for extracting higher-level representations 
effectively in speech recognition [4, 5] and Long Short-Term 
Memory (LSTM) models for sequence classification [6] are the 
most common examples. Recently, an extreme end-to-end 
approach using DNNs demonstrated good performance, where 
raw speech waveforms were used directly as inputs to build a 
model that learns feature extraction and classification together 
[7]. However, this end-to-end approach fails to take advantage 
of useful features established by experts in the past decades in 
the field of emotion recognition. Moreover, an end-to-end 
approach also requires a large network size because the model 
needs to jointly learn feature extraction and classification, and 
therefore needs an immense amount of data for good 
performance. 

We propose EmNet, a model that combines 1) the use of 
common features useful for emotion recognition without 
eliminating their temporal information, and 2) DNN to extract 
higher level representations of temporal patterns of the features 
and relating them to the corresponding emotion status. 

The rest of this paper is organized as follows: Section 2 
presents the details of EmNet. Experimental validation on a 
common data corpus is presented in comparison with 
conventional approaches in Section 3, followed by conclusions 
in Section 4. 

2. Proposed EmNet Model 
Fig. 1 (a) shows the structure of EmNet for emotion 
recognition. The model consists of multiple stages of 
processing: feature extraction, feature normalization, CNN 
layer with local convolution, CNN layer with global 
convolution, and LSTM layers followed by feedforward layer. 
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(a)                                                                (b) 

Fig. 1: Proposed EmNet model – (a) model structure, and (b) trained 64 filter weights of the local convolution layer.

                                                                                     

2.1. Feature extraction 

The focus of this study is not on the extensive study of features 
themselves but on the usefulness of their temporal trajectory. 
Thus, we decided to use 20 features among the 88 features in 
the eGeMAPS [2] for simplicity. They are zero-crossing rate, 
log frame energy, frame energy entropy, spectral centroid, 
spectral spread, spectral entropy, spectral flux, spectral roll-off, 
Mel-Frequency Cepstral Coefficients (MFCC) C1 ~ C5, 
voicing probability, pitch, formant bandwidth, formant gain, 
and three harmonic energy ratios (ratio of log energy of the first 
harmonic to the log energy of the second through fourth 
harmonics). 

These features are extracted from the input speech signal 
every 10 msec using a sliding 30-msec Hamming window, to 
form a time-sequence of 20-dimension feature vectors. To 
preserve temporal information, these feature vectors are used as 
the input to the network directly, instead of using their mean 
and standard deviation as an input. 

2.2. Normalization 

Following the typical feature normalization method used in the 
emotion recognition field [2, 8], the feature vectors are 
standardized (normalized) by the mean and standard deviation 
vectors obtained from the corresponding talker. 

For easier use of keras deep learning package [13] for 
subsequent machine learning stages, the number of feature 
vectors along the time axis is either truncated or zero-padded to 
512 frames, depending on the length of input speech utterance. 
The resulting feature vector is a 20x512 feature-time 
representation. 

2.3. Local convolution layer 

In image processing, the input of CNN is organized as a two-
dimensional receptive field to capture the patterns along 
horizontal and vertical coordinates. However, this geometric 
locality is not applicable in EmNet structure. In the 20x512 
input speech representation (Fig. 1 (a)), different features 
arranged along the vertical coordinate are different quantities 
and thus are not directly related to each other. For this reason, 
we build a local convolution layer with 1x6 filters, by which 
convolution operation is performed along the time axis only for 
each feature component. Then, a ReLU activation function is 
applied to the output of each filter to produce 64 feature maps 
(we found empirically that 64 filters produce good 
performance). Finally, max pooling with a pool size of 4 is 
performed for each feature map on the output of local 
convolutional layer. 

Once trained properly, we expect that individual filters are 
tuned to detect important temporal patterns leading to the 
direction to improve emotion recognition accuracy. As an 
example, 64 filter shapes, trained on the database described in 
Sec. 3.1, are shown in Fig. 1 (b). 

2.4. Global convolution layer 

From the feature maps created by the local convolution layer, a 
global convolution layer is designed to extract higher-level 
information using a receptive field that spans across the 20-
dimension features for two time frames (corresponding to 80 
msec). We found that 128 is a good number for the number of 
filters, and ReLU activation function is applied to the output of 
filter. Max pooling is then applied on each feature map with a 
pool size of 2 to produce a temporal sequence of 128 features, 
as shown in Fig. 1 (a). Here, the time interval between 
consecutive features becomes 160 msec.  
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2.5. LSTM and feedforward layer 

The output of the global convolution layer is processed by a 2-
layer LSTM network with 48 cells each, where we used a 0.25 
dropout rate. The output of the LSTM layers is fed to a 
dense/feedforward layer with softmax activation units to 
classify the input onto one of the 7 emotion categories. 

3. Experiments 

3.1. Database 

The performance of EmNet is investigated on the Berlin 
Emotion Speech Database (EMO-DB) [8], which is one of the 
most widely used databases for emotion recognition. It contains 
535 speech wave files and consists of 10 short sentences spoken 
by 5 female and 5 male talkers with acted emotion. Each file is 
labeled with one of the seven emotions: anger, happiness, 
sadness, neutral, boredom, disgust, and fear. 

3.2. Model training and validation 

Experiments are performed using Leave-One-Speaker-Out 
(LOSO) cross-validation, where the model is trained with the 
data of nine speakers and evaluated with the samples of the 
remaining one speaker. By changing the speaker, we can obtain 
10 recognition rates, and the final performance metric is the 
average of these values [2]. 

We built a baseline static recognition system based on the 
same feature set used in EmNet to investigate the effectiveness 
of EmNet in incorporating temporal information. For each 
speech file, a 40-dimensional vector, obtained from the mean 
and standard deviation of the temporal sequence of the 20-
dimensional feature vectors (described in Sec. 2.1), is used as 
an input vector to a SVM classifier.  

The training of EmNet is performed based on the ADAM 
optimizer [10] using keras/theano, and the batch size is set to 
64. It is impractical to run an exhaustive search for the optimal 
selection of parameters consisting of the combination of filter 
size, number of filters and pooling size of the local and global 
convolution layers and the number of LSTM cells. We thus 
explored the parameters one by one in a reasonable search range 
derived from domain-specific intuition, and used the best or top 
2 parameter values in the search process of the next parameter. 
In total, 98 different network configurations were evaluated to 
find the best performing network configuration. 

3.3. Results and discussion 

Fig. 2 shows the recognition rate as a function of the number of 
free parameters of EmNet across the 98 trials. Eleven surpassed 
the state-of-the-art performance of 86% from the 
INTERSPEECH 2013 Computational Paralinguistics 
Challenge (ComParE) and a SVM classifier using 6373 features 
[1, 2]. The highest performance is marked as X. 

Table 1 summarizes the reported performance of different 
models on EMO-DB. The baseline SVM system we built based 
on only 20 features (Sec. 3.2) achieves a 77.3% recognition 
rate, which is much worse than the 86.0% in [2], most likely 
because of the much smaller feature sets used (20 vs. 6373). 
The proposed EmNet model achieves as high as 88.9% 
recognition rate with the same 20 features. This is a 51.1% error 
reduction rate compared to baseline, demonstrating that the 
temporal information is utilized and outperforming the previous 
state-of-the-art. 

 
Fig. 2: Recognition rate versus the number of free 

parameters of EmNet. 

Table 1: Emotion recognition results on EMO-DB 

Model Recognition Rate [%] 
Chaspari, 2014 [7] 79.8 
Kalinli, 2016 [10] 82.7 

ComParE + SVM, 2016 [1, 2] 86.0 
Lotfidereshgi, 2017 [11] 82.4 

Baseline SVM (this paper) 77.3 
Proposed model: EmNet 88.9 

 
Fig. 3 (a) compares more in-depth results of EmNet, where 

we can see the effectiveness of the proposed model compared 
with the static baseline SVM for each emotional category. 
EmNet reduces recognition error rates significantly by more 
than 50-60% across all emotional categories except for 
happiness. The error reduction rate for happiness reaches only 
about 20%. The confusion matrix of recognition performance 
in Fig. 3 (b) provides a better insight into the misclassification 
of happiness. Almost half of the errors are due to the 
misclassification to anger and the other half to fear. Similarly, 
anger is sometimes confused with happiness. These errors, 
depicted as red circles, especially need to be reduced because 
they are more critical than the those between neutral and 
boredom (depicted as a green circle) in practical use. 

Internal representations of EmNet lead to better 
visualizations of geometric relationships between different 
emotion states. Fig. 4 shows a 2-dimensional emotion space 
obtained by applying a t-Distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm to the LSTM output vector at the 
last time step of individual speech utterances. t-SNE is a useful 
data visualization tool that focuses on preserving the local 
distances of the original data and its low-dimensional 
projections [14]. It is interesting to see that high arousal 
emotions (happiness, fear and anger) are clustered together in 
close proximity, while valence states are difficult to separate— 
happiness (+) vs. fear and anger (-). Similar tendency was 
observed with different values of perplexity of t-SNE between 
5 and 80, and the perplexity of 30 is used in Fig. 4. 
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Fig. 3: Detailed performance analysis of EmNet – (a) 
categorical performance comparison with the baseline 

SVM, and (b) confusion matrix. 

 
Fig. 4: t-SNE visualization of EmNet emotion space. 

4. Conclusions 
In this paper, we propose EmNet for emotion recognition of 
speech. The model combines 1) a feature extraction stage 
known to be useful for emotion recognition task and 2) a DNN 

to model the unknown mechanism in recognizing emotion 
status from the temporal sequence of feature vectors, where the 
DNN consists of two CNN layers for local and global 
convolution and LSTM layers. The proposed model, evaluated 
on the EMO-DB, demonstrates the state-of-the-art 
performance. 

One important note is that although we followed the 
common practice of LOSO cross validation, it seems probable 
that we overfit the architecture because no separate 
development set was used. All other works might suffer from a 
similar problem where hyperparameters are effectively tuned 
on the test set. We suggest that collecting a new dataset large 
enough to support a separate development set would be a 
valuable contribution. Further remaining works include the use 
of extended feature set, e.g., 88 features in eGeMAPS [2] 
instead of the current 20 features, performance evaluation on 
different databases, and the performance evaluation of the end-
to-end DNN approach [7] on EMO-DB. 
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