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Abstract
A voice conversion system typically consists of two mod-

ules, the feature conversion module that is followed by a
vocoder. The exemplar-based sparse representation marks a
success in feature conversion when we only have a very lim-
ited amount of training data. While parametric vocoder is gen-
erally designed to simulate the mechanics of the human speech
generation process under certain simplification assumptions, it
doesn’t work consistently well for all target applications. In
this paper, we study two effective ways to make use of the lim-
ited amount of training data for voice conversion. Firstly, we
study a novel technique for sparse representation that augments
the spectral features with phonetic information, or Tandem Fea-
ture. Secondly, we study the use of WaveNet vocoder that can
be trained on multi-speaker and target speaker data to improve
the vocoding quality. We evaluate that the proposed strategy
with Tandem Feature and WaveNet vocoder, and show that it
provides performance improvement consistently over the tradi-
tional sparse representations framework in objective and sub-
jective evaluations.
Index Terms: Phonetic Sparse Representation, WaveNet
Vocoder, Voice Conversion

1. Introduction
Voice conversion (VC) converts one speaker’s voice to sound
like that of another. With the advancement of the technology,
voice conversion has enabled many applications such as per-
sonalized speech synthesis, spoofing attacks, and dubbing of
movies.

The early studies of voice conversion were focused on
spectrum mapping between source and target speakers [1, 2].
The statistical parametric approaches, such as Gaussian mix-
ture model (GMM) [3], partial least square regression [4] and
dynamic kernel partial least squares regression (DKPLS) [5]
marked a success in spectrum conversion.

As a solution to the limited training data problem, non-
negative matrix (NMF) based voice conversion frameworks
[6] were proposed. With the NMF technique [6, 7], a group
of exemplar-based sparse representation schemes were studied
[8, 9, 10] to address the over-smoothing problem in voice con-
version. More recently, the idea of phonetically aware multiple
dictionaries [11, 12] was proposed to take into account the pho-
netic information in the speech content, that provided superior
voice conversion quality. The traditional exemplar-based voice
conversion frameworks [6, 8, 14] and phonetic sparse represen-
tation [11, 12, 13] work under the assumption that source and
target speakers can share the same activation matrix. However,
the activation matrix is highly dependent on the source speaker
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as only source spectral features have been used in the estima-
tion process without considering the underlying phonetic state
sequence. As a result, the activation matrix is affected by un-
wanted distortions such as speaker characteristics that we don’t
want to carry over to the target voice.

The phonetic posteriorgram (PPG) [15] represents the pos-
terior probability of the each phonetic class for of a speech
signal. Therefore, PPGs are supposed to be speaker indepen-
dent [16]. Recently, PPG has been used in voice conversion
[17, 12] to represent the underlying phonetic information to
transfer across speakers. In this paper, we study voice conver-
sion with a limited amount of parallel training data. By aug-
menting spectral features with PPG phonetic features to repre-
sent speech exemplars, that we call Tandem Feature, we explic-
itly incorporate frame-level phonetic information into the dic-
tionaries. In this way, we believe that we can improve the es-
timation of activation matrix in phonetic sparse representation
framework, therefore, the quality of converted speech.

It is noted that speech synthesized by traditional parametric
vocoders lacks naturalness due to the over-simplified assump-
tions in signal processing. WaveNet vocoder [18], that directly
estimates waveform samples from the input feature vectors, po-
tentially addresses the problem. Speaker dependent and in-
dependent WaveNet vocoders [19, 20] have been proposed to
make it possible to generate natural sounding synthetic voices.
The WaveNet approach transforms the vocoder design into a
learnable process based on the data. Through the learning, the
network is expected to capture the dynamics of the complex me-
chanics of the human speech generation process. In this paper,
we propose the use of both speaker independent and speaker
adapted WaveNet vocoders to generate natural sounding speech
for voice conversion.

Recently, GMM-based voice conversion, that is followed
by a WaveNet vocoder [21], has been proposed and shown to
achieve a good conversion performance. To our best knowl-
edge, this paper is the first attempt to study the interaction be-
tween the speaker independent and speaker adapted WaveNet
vocoder and the phonetic sparse representation technique for
voice conversion with small training data. It is important to
mention that the sparse representation is known for produc-
ing high similarity voice, while WaveNet vocoder offers natural
sounding voice. In this paper, we aim to benefit from the best
of the two techniques.

The main contributions of this paper include, 1) we propose
a conversion framework by building sparse representation dic-
tionaries based on PPG Tandem Feature (TF), that we call TF-
dictionaries; 2) we propose to incorporate both frame-level and
phone-level phonetic information to the sparse representation to
improve the activation matrix, 3) we propose a back-off scheme
as a solution to insufficient training data; 4) we propose a voice
conversion framework that consists of feature conversion and
a speaker independent WaveNet vocoder for voice conversion
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with small training data.
This paper is organized as follows: In Section 2, we explain

the role of activation matrix estimation in sparse representation.
In Section 3, we present the novel idea of TF exemplars, and
formulate the training and run-time processes. In Section 4, we
study the interaction between the WaveNet vocoder and sparse
representation for voice conversion. We report the objective and
subjective test results in Section 5 and conclude in Section 6.

2. Activation Matrix: A Bridge Between
Speakers

In the traditional sparse representation frameworks [6][8], we
construct a pair of dictionaries, denoted as A and B, that con-
sists of aligned exemplars between source and target. Due to the
nonnegative nature of spectrogram, nonnegative matrix factor-
ization (NMF) technique is employed to estimate the activation
matrix H, which is constrained to be sparse. Mathematically,
the objective function is written as

H = argmin
H≥0

d (X,AH) + λ||H|| (1)

where λ is the sparsity penalty factor and X is the spectrogram
of a source utterance. Estimating the activation matrix H, a
generalised Kullback-Leibler (KL) divergence [22] is used. It is
assumed that source and target dictionaries A and B can share
the same activation matrix H. Therefore, the converted spec-
trogram can be written as Ŷ = BH.

As discussed in [23], the sharing of source and target acti-
vation matrix in [6, 8, 11, 12] is grounded neither well in the-
ory nor in practice. Such sharing is based on the assumption
that the source activation matrix H mostly captures the pho-
netic content. However, the source activation matrix in reality
carries information such speaker characteristics from the input
source utterance, that we don’t want to carry over to the target
utterance.

Given a pair of dictionaries, and a pair of parallel utter-
ances, we can derive an activation matrix from the source ut-
terance following Eq.(1), that we call the source activation ma-
trix H; If we replace X with Y, and A with B in Eq.(1), we
can derive an activation matrix for the target utterance, that
we call target activation matrix. In the traditional approaches
[6, 8, 11, 12], we typically assume that we can use the source
activation matrix H for the target speaker at run-time because
the target activation matrix is not available.

To improve the estimation of activation matrix so that it is
more sharable with the target speaker, we propose to build dic-
tionaries using Tandem Feature that consists of spectral features
and PPGs. As PPGs are estimated with a large amount of tem-
poral context, they represent the phonetic information indepen-
dent of speakers.

3. Activation Matrix with Tandem Feature
We now study a novel technique for activation matrix estimation
in conjunction with phonetic sparse representation, such that the
activation matrix depends less on the source speaker.

3.1. Tandem Feature

A recent study shows that phonetic sparse representation [11,
12] achieves better voice conversion quality than the tradi-
tional sparse representation by using phonetic dictionaries. In
this paper, we further the idea of phonetic sparse representa-
tion by augmenting spectral feature with PPG feature, that we
call Tandem Feature. We believe that the phonetic dictionaries
with Tandem Feature allow the activation matrix to capture the
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Figure 1: The training and run-time conversion phases of pro-
posed phonetic sparse representation framework with PPG Tan-
dem Feature and WaveNet vocoder.
speaker independent phonetic content, thus, making the source
activation matrix more shareable with the target speaker.

While our proposal shares similar motivation with [11, 12],
it differs from [11, 12] in many ways, for example: 1) for the
first time, we incorporate both frame-level (PPGs) and phone-
level (phonetic dictionary) phonetic information into the sparse
representation framework, while [11, 12] only uses phone level
information; 2) we propose a backoff scheme by using PPG
Tandem Feature as a solution to insufficient training data; 3)
for the first time, we study the interaction between exemplar-
based sparse representation and WaveNet vocoder to achieve
high voice quality.

3.2. Phonetic Sparse Representation with Tandem Feature
Figure 1 shows the training and run-time phases of the pro-
posed voice conversion framework. During training, we first
use a DNN-HMM based Automatic Speech Recognizer (ASR)
to find the phone labels, boundaries and PPGs for each train-
ing utterance. We propose to construct multiple coupled dic-
tionaries [Ai;Bi], one for each phone i, where i = 1, ..., n,
Ai is the source phonetic dictionary, and Bi the target phonetic
dictionary. Different from the previous studies [11, 12], our
source phonetic dictionary here consists of both source spec-
tral features and PPGs, called Source TF Phonetic Dictionary,
while the target phonetic dictionary Bi only includes spectral
features.

At run-time conversion, we obtain the spectral features, de-
noted as Xi and its corresponding PPGs denoted as Pi, for each
phone of the source speaker with the same ASR in the training
phase. For phone i = k, the objective function for estimating
the activation matrix can be formulated as:

Hk = argmin
Hk≥0

d ([Xk;Pk],AkHk) + λ||Hk|| (2)

The activation matrix is applied to the target phonetic dictionary
to perform conversion. The converted spectrogram for phone k
can be generated as Ŷk = BkHk. The use of Tandem Fea-
ture is applicable to any exemplar-based sparse representation
schemes. In this paper, we study the use of Tandem Feature
in the phonetic sparse representation framework, that we call
PSR-TF hereafter.

So far, no contextual information is taken into considera-
tion. In other words, each frame is converted independently.
This may lead to sharp changes across frames. By considering
contextual information, one can expect a smoother output dur-
ing conversion [8]. We implement exemplars which span multi-
ple consecutive frames in phonetic dictionary to achieve a more
reliable activation matrix estimation. Moreover, to account for
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phone transition, we use both monophone and biphone exem-
plars in the TF-dictionary. We don’t use a higher order of phone
segments than biphone because biphone segments are enough to
cover intended phone transition.

3.3. Back-off Scheme
As we have a limited amount of training data, it is not guaran-
teed to have an adequately constructed phonetic sub-dictionary
Ak that corresponds to a phone i = k in the input speech at run-
time. In such case, a backoff Tandem Feature dictionary will be
used to estimate the activation matrix, and to perform spectral
mapping. In the extreme case when a acoustic dictionary for all
phones is used, the proposed framework will be reduced to the
traditional sparse representation [8] with Tandem Feature.

Overall, the proposed back-off scheme is an extension to
the traditional sparse representation (SR) framework by incor-
porating PPG features. Therefore, we call it sparse representa-
tion with Tandem Feature, or SR-TF. As the proposed back-off
scheme incorporates PPGs as frame-level phonetic information,
we expect that it outperforms the traditional sparse represen-
tation counterpart. Last but not least, with the TF dictionary,
SR-TF can also be used for spectrum conversion by itself.

4. Speaker-Adapted WaveNet Vocoder
The state-of-the-art voice conversion frameworks [1, 2, 3, 24,
25, 26, 27, 28] including sparse representation [6, 11, 12], typ-
ically use a statistical parametric vocoder. Traditional paramet-
ric vocoder is generally designed to simulate the complex me-
chanics of the human speech generation process under certain
simple assumptions, for example, the interaction between F0
and formant structure is ignored, the phase information is dis-
carded [29], the assumption of stationary process in the short-
time window, a time-invariant linear filter. As a result, the tra-
ditional vocoding voice lacks naturalness in general. Such a
problem becomes more serious in voice conversion where the
feature conversion changes both F0 and the formant structure
of speech among others. We expect that a good vocoder can
help reconstruct the speech by harmonizing various changes.

WaveNet [18] is a well-known deep neural network that can
generates raw audio waveforms. Recently proposed WaveNet
vocoder [21, 20] achieves remarkable sound quality improve-
ment over the traditional vocoders. WaveNet vocoder is able to
learn the relationship between input features and output wave-
forms, and also able to learn the interaction among the input fea-
tures. Moreover, it is shown to be successful in speech synthesis
[30] and in GMM-based voice conversion [21] by improving the
naturalness of the synthetic voice. Recently, a speaker indepen-
dent WaveNet vocoder [20] is studied by utilizing the acoustic
features such as F0, aperiodicity, and spectrum as the additional
inputs of WaveNet. In doing so, WaveNet learns a sample-
by-sample correspondence between the time-domain waveform
and the corresponding acoustic features. To make use of hu-
man speech of a larger speaker population that is publicly avail-
able, we train a speaker independent WaveNet vocoder [20] to
generate speech waveforms. Furthermore, to take into account
the training samples from the target speaker, we also propose
to adapt the speaker independent WaveNet vocoder towards the
target speaker.

In this paper, we propose a framework where we only have
a limited number of speech samples from the source and tar-
get speakers. We believe that the WaveNet vocoder can bene-
fit from the limited samples. We train the speaker independent
WaveNet vocoder in a similar way that is described in [20]. Dur-
ing training phase, we do not use the speech data from any of

Figure 2: SR vs SR-TF: The experiment setups for MCD study
reported in Table 1.
the source or target speakers. To adapt the WaveNet vocoder,
we use the same target utterances that are used in the train-
ing of sparse representation. At run-time conversion, we use
the adapted WaveNet vocoder to generate the converted speech
waveforms.

5. Experiments
We conduct the experiments on VCC 2016 database [31, 32]
to assess the performance of spectrum conversion. For funda-
mental frequency (F0), we perform linear conversion, that is to
normalize the mean and variance of the source speech to those
of target. In all experiments, 30 source-target utterance pairs
are used during training. We use a DNN-HMM based ASR [33]
to obtain phone labels, phone boundaries and PPGs. The ASR
is reported with 18.0% word error rate (WER) on WSJ Eval92
database. We adopt the Mel ceptral distortion (MCD) [34] be-
tween converted speech and target speech as the objective eval-
uation measure.

We train the speaker-independent WaveNet Vocoder with 5
hours of data from CMU Arctic and Voice Conversion Chal-
lenge (VCC) 2016 datasets. We note that the batch size is
20,000 and the iteration number is 200,000. Then, we use this
speaker-independent WaveNet Vocoder as the initialized net-
work for speaker adaptation. During the adaptation, we use
about 3 minutes of speech from the target speaker, with a batch
size of 20,000 over 100,000 iterations.

SR SR-TF
MCDs MCD MCDs MCD

3.66 6.02 4.03 5.81
Table 1: Comparison of spectral distortions of the re-estimated
source and converted target with and without Tandem Feature.
We use exemplars, that span over 3 consecutive frames.
5.1. Objective Evaluation

To establish the baseline, we implemented some of the well es-
tablished voice conversion schemes, such as traditional sparse
representation approach (SR) [8] and Phonetic Sparse Rep-
resentation (PSR) [12]. We compare the proposed PSR-TF
scheme against the baselines.

First of all, we would like to validate that the TF-dictionary
leads to an activation matrix that is more shareable between the
source and target speaker, although it is estimated only from the
source speech. We devise an experiment as illustrated in Figure
2, and report the MCD values of 4 different settings in Table 1.
Given a test set of parallel utterances, we estimate the source
activation matrix H with and without using Tandem Feature,
denoted as SR-TF and SR [8]. We then estimate the MCD be-
tween the actual source speech X and the re-estimated source
speech X̂ using the activation matrix H, that we call MCDs;
and the MCD between the actual target Y and the converted tar-
get Ŷ using the same activation matrix H, that we call MCD.
In practice, X̂ is not needed, we only need Ŷ. Here, we esti-
mated X̂ just to examine whether H is fair to both source or
target. If the activation H is biased to the source, we will see
a low MCDs and a high MCD. It is logical that MCDs is
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Dictionary Monophone Monophone+Biphone
# Frames 1 3

Script: Training yes yes no yes yes no
Script: Testing yes no no yes no no

MCD: PSR [12] 5.28 5.33 5.48 5.16 5.23 5.44
MCD: PSR-TF 5.22 5.26 5.39 5.08 5.19 5.37

Table 2: Comparison of spectral distortions between the proposed phonetic sparse representation with PPG Tandem Feature (PSR-TF)
and the baseline without PPG Tandem Feature (PSR [12]). We also compare the effect of contextual information, i.e., the number of
consecutive frames (# Frames) as an exemplar entry in sparse representation.

lower than MCD. By introducing TF-dictionary, we attempt
to find H that reduces the MCD between the actual target and
the converted target.

We observe that the SR-TF framework reduce the target
MCD of the traditional sparse representation framework [8],
from 6.02 to 5.81, with a slight increase of MCDs from 3.66
to 4.03. This experiment not only ascertains the fact that source
activation matrix is not as sharable as we expected for the tar-
get speaker, but also shows that the activation matrix obtained
from PPG Tandem Feature lowers the MCD to the target, in
other words, depends less on the source. In general, as SR-TF
uses the frame-level phonetic information, its activation matrix
depends less on the source speaker than that of SR approach,
hence yields a better conversion. It is important to mention that
PSR-TF uses SR-TF as the back-off scheme, just like SR being
the back-off of PSR.

Table 2 reports the MCD values for a number of settings in
a comparative study for PSR and PSR-TF. By taking into ac-
count the phonetic information at phoneme level, or segmental
level, PSR has proven effective [12] to outperform the baseline
sparse representation (SR) framework [8]. The proposed PSR-
TF approach is an extension to the PSR by taking into account
segmental level as well as frame-level phonetic information.
We observe that all PSR-TF settings consistently outperform
the phonetic sparse representation frameworks. In addition, we
observed that multiple-frame exemplars is apparently helpful
to avoid sharp changes across frames. We also observe that
when scripts are available for training and/or test utterances,
we obtain better phone segmentation, therefore, lower MCD
values. Last but not least, we observe that both monophones
and biphones in TF-Dictionaries enhances the conversion per-
formance.

As the same source-target utterances are used for training,
we can compare Table 1 and Table 2, where we use 3 consec-
utive frames. We observe that PSR-TF consistently achieves
lower MCD values than SR-TF, as PSR-TF takes into account
both phoneme and frame level phonetic information, while SR-
TF only benefits from frame level phonetic information. By
comparing SR with SR-TF, and PSR with PSR-TF, we find the
use of phonetic information in both segmental level and frame
level is rewarding.

5.2. Subjective Evaluation

We conduct four listening experiments to assess the perfor-
mance of Tandem Feature, and the effect of WaveNet vocoder
in PSR frameworks, in terms of voice quality and speaker sim-
ilarity. 10 subjects participated in all the listening tests. Each
listener listens to 30 converted utterances from 2 target speak-
ers.

We conduct the first two listening experiments, as reported
in Fig. 3a and 3b, to examine the effect of Tandem Feature
in terms of voice quality and speaker similarity. We note that
the original PSR framework [12] uses the STRAIGHT vocoder
to generate speech waveform. To assess the effect of Tan-

0 20 40 60

PSR-TF

PSR

(a) Voice quality

0 20 40 60

PSR-TF

PSR

(b) Speaker similarity
Figure 3: The preference percentage tests with 95 % confidence
interval for PSR and PSR-TF.

dem Feature, without changing the vocoding process, we use
STRAIGHT in both PSR and PSR-TF in these experiments.
Each listener is asked to decide the better sample in terms of
voice quality and speaker similarity. We observe that PSR-TF
outperforms the baseline PSR consistently in both voice quality
and speaker similarity.

We further conduct a listening experiment, that is re-
ported in Table 3, to study the listener preference of WaveNet
vocoders. We perform synthesis by the speaker independent
WaveNet [20] and the WaveNet that is adapted to the target
speaker by using 30 utterances. We observe that the Adapted
WaveNet outperforms the speaker independent WaveNet in
terms of voice quality, that validates our proposed idea.

Motivated by the success of Tandem Feature and the
adapted WaveNet, we now move on to the fourth listening ex-
periment, as reported in Table 4, to assess the performance of
the proposed PSR-TF with adapted WaveNet vocoder. We per-
form adaptation by using the same 30 utterances from the target
speaker, that have been used for TF-dictionary construction. We
evaluate the sound quality of the converted voices by using the
mean opinion score (MOS). The listeners rate the quality of the
converted voice using a 5-point scale: “5” for excellent, “4”
for good, “3” for fair, “2” for poor, and “1” for bad. Table 4
shows that the proposed voice conversion framework PSR-TF
with WaveNet vocoder significantly outperforms the traditional
frameworks SR and PSR.

Speaker independent WaveNet [20] Adapted WaveNet
(41.0± 3.2)% (59.0± 3.7)%

Table 3: The preference test between the speaker independent
WaveNet vocoder [20] and the adapted WaveNet vocoder.

SR PSR PSR-TF
2.78±0.12 3.02 ±0.15 3.41 ±0.11

Table 4: Comparison of evaluated MOS for SR [8], PSR[12]
and PSR-TF with adapted WaveNet vocoder.

6. Conclusion
We have studied two effective ways to improve the conversion
performance under limited training data. We first propose the
Tandem Feature sparse representation strategy. We implement
the TF-dictionary in two sparse representation frameworks as a
solution to the very limited parallel training data problem. We
show that the proposed strategy effectively improve the voice
quality. We also propose the use of speaker adapted WaveNet
vocoder. Experiment results show that the proposed framework
makes good use of the limited training data and outperforms the
baselines in both objective and subjective evaluations.

1981



7. References
[1] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice con-

version through vector quantization,” In IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 655–658, 1988.

[2] Kiyohiro Shikano, Satoshi Nakamura, and Masanobu Abe,
“Speaker Adaptation and Voice Conversion by Codebook Map-
ping,” IEEE International Sympoisum on Circuits and Systems,
pp. 594–597, 1991.

[3] Tomoki Toda, Alan W. Black, and Keiichi Tokuda, “Voice conver-
sion based on maximum-likelihood estimation of spectral param-
eter trajectory,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 15, no. 8, pp. 2222–2235, 2007.

[4] Elina Helander, Tuomas Virtanen, Jani Nurminen, and Moncef
Gabbouj, “Voice conversion using partial least squares regres-
sion,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 18, no. 5, pp. 912–921, 2010.

[5] E. Helander, H. Silen, T. Virtanen, and M. Gabbouj, “Voice con-
version using dynamic kernel partial least squares regression,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 20, no. 3, pp. 806–817, 2012.

[6] Ryoichi Takashima, Tetsuya Takiguchi, and Yasuo Ariki,
“Exemplar-based voice conversion in noisy environment,” In
IEEE SLT, pp. 313–317, 2012.

[7] Yi Luan, Daisuke Saito, Yosuke Kashiwagi, Nobuaki Minematsu,
and Keikichi Hirose, “Semi-supervised noise dictionary adap-
tation for exemplar-based noise robust speech recognition ,” In
ICASSP, pp. 1764–1767, 2014.

[8] Zhizheng Wu, Tuomas Virtanen, Eng Siong Chng, and Haizhou
Li, “Exemplar-based sparse representation with residual compen-
sation for voice conversion,” IEEE/ACM Transactions on Audio,
Speech and Language Processing, vol. 22, no. 10, pp. 1506–1521,
2014.

[9] Ryo Aihara, Kenta Masaka, Tetsuya Takiguchi, and Yasuo Ariki,
“Parallel dictionary learning for multimodal voice conversion us-
ing matrix factorization,” In INTERSPEECH, pp. 27–40, 2016.

[10] Zeyu Jin, Adam Finkelstein, Stephen Di Verdi, Jingwan Lu, and
Gautham J Mysore, “Cute: a concatenative method for voice con-
version using exemplar- based unit selection,” In ICASSP, 2016.

[11] Ryo Aihara, Toru Nakashika, Tetsuya Takiguchi, and Yasuo Ariki,
“Voice conversion based on non-negative matrix factorization us-
ing phoneme-categorized dictionary,” In ICASSP, 2014.

[12] Berrak Sisman, Haizhou Li, and Kay Chen Tan, “Sparse represen-
tation of phonetic features for voice conversion with and without
parallel data,” IEEE ASRU, 2017.

[13] Berrak Sisman, Haizhou Li, and Kay Chen Tan, “Transforma-
tion of Prosody in voice conversion,” APSIPA ASC. accepted for
publication, 2017.

[14] Berrak Sisman, Grandee Lee, Haizhou Li, and Kay Chen Tan,
“On the analysis and evaluation of prosody conversion tech-
niques,” IALP, 2017.

[15] Keith Kintzley, Aren Jansen, and Hynek Hermansky, “Event se-
lection from phone posteriorgrams using matched filters,” In IN-
TERSPEECH, pp. 1905–1908, 2011.

[16] Lifa Sun, Hao Wang, Shiyin Kang, Kun Li, and Helen Meng,
“Personalized, cross-lingual TTS using phonetic posteriorgrams,”
In INTERSPEECH, pp. 322–326, 2016.

[17] Lifa Sun, Kun Li, Hao Wang, Shiyin Kang, and Helen Meng,
“Phonetic posteriorgrams for many-to-one voice conversion with-
out parallel data training,” In IEEE ICME, 2016.

[18] Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew
Senior, and Koray Kavukcuoglu, “Wavenet: A generative model
for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[19] Akira Tamamori, Tomoki Hayashi, and Kazuhiro Kobayashi,
“Speaker-dependent wavenet vocoder,” INTERSPEECH, 2017.

[20] Tomoki Hayashi, Akira Tamamori, Kazuhiro Kobayashi, Kazuya
Takeda, and Tomoki Toda, “An investigation of multi-speaker
training for wavenet vocoder,” 2017 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pp. 712–718,
2017.

[21] Kazuhiro Kobayashi, Tomoki Hayashi, Akira Tamamori, and
Tomoki Toda, “Statistical voice conversion with wavenet-based
waveform generation,” INTERSPEECH, 2017.

[22] Jort F. Gemmeke, Tuomas Virtanen, and Antti Hurmalainen,
“Exemplar-based sparse representations for noise robust auto-
matic speech recognition,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 19, no. 7, pp. 2067–2080, 2011.

[23] Ryo Aihara, Tetsuya Takiguchi, and Ariki Yasuo, “Activity-
mapping non-negative matrix factorization for exemplar-based
voice conversion,” In ICASSP, 2015.

[24] Heiga Zen, Yoshihiko Nankaku, and Keiichi Tokuda, “Proba-
bilistic feature mapping based on trajectory HMMs,” In INTER-
SPEECH, pp. 1068–1071, 2008.

[25] Takuhiro Kaneko and Hirokazu Kameoka, “Parallel-data-free
voice conversion using cycle-consistent adversarial networks,”
arXiv, 2017.

[26] Wei-Ning Hsu, Yu Zhang, and James Glass, “Unsupervised
Learning of Disentangled and Interpretable Representations from
Sequential Data,” arXiv, 2017.

[27] Wei-Ning Hsu, Yu Zhang, and James Glass, “Learning La-
tent Representations for Speech Generation and Transformation,”
arXiv, 2017.

[28] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, and
Hsin-Min Wang, “Voice Conversion from Unaligned Corpora us-
ing Variational Autoencoding Wasserstein Generative Adversarial
Networks,” arXiv, 2017.

[29] Sadaoki Furui, “Digital speech processing, synthesis, and recog-
nition(revised and expanded),” Digital Speech Processing, Syn-
thesis, and Recognition, 2000.

[30] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster,
Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang, Yux-
uan Wang, RJ Skerry-Ryan, Rif A. Saurous, Yannis Agiomyr-
giannakis, and Yonghui Wu, “Natural tts synthesis by condition-
ing wavenet on mel spectrogram predictions,” arXiv:1712.05884,
2018.

[31] Mirjam Wester, Zhizheng Wu, and Junichi Yamagishi, “Multidi-
mensional scaling of systems in the Voice Conversion Challenge
2016,” In INTERSPEECH, pp. 40–45, 2016.

[32] Tomoki Toda, Ling-Hui Chen, Daisuke Saito, Fernando Villav-
icencio, Mirjam Wester, Zhizheng Wu, and Junichi Yamagishi,
“The Voice Conversion Challenge 2016,” In INTERSPEECH, pp.
1632–1636, 2016.

[33] Daniel Povey, Arnab Ghoshal, Nagendra Goel, Mirko Hanne-
mann, Yanmin Qian, Petr Schwarz, Jan Silovsk, and Petr Motl,
“The Kaldi Speech Recognition Toolkit,” In IEEE ASRU, 2011.

[34] R. Kubichek, “Mel-cepstral distance measure for objective speech
quality assessment,” Communications, Computers and Signal
Processing, pp. 125–128, 1993.

1982


