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Abstract
Modern automatic speaker verification (ASV) systems are

highly vulnerable to spoof attacks, and developing ASV anti-
spoofing algorithms to protect ASV systems form these attacks
is currently a part of active research. Contrarily to current
trends on development of stand-alone spoof detection system,
this work aims detection of replay attacks directly on the ASV
system. The claim made through replay spoofing trials is re-
jected as impostors directly by ASV system. The objective here
is to model the changes in the excitation signal characteristics
caused by playback devices for replay detection. Accordingly,
two linear prediction (LP) residual based source features are
proposed for rejecting replay spoofing trials namely, RMFCC
(residual mel-frequency cepstral coefficients) and LPRHEM-
FCC (LP residual Hilbert envelope MFCC). A comparative
analysis between these two source features has been performed
through speaker verification experiments to evaluate their effec-
tiveness for ASV anti-spoofing applications. The comparison
between the two has been made in the form of (source feature
+ MFCC) combination. The experiments are conducted using
self-developed IITG-MV replay database. From the experimen-
tal results, it has been observed that ‘LPRHEMFCC+MFCC’
combination outperforms ‘RMFCC+MFCC’ combination, un-
der replay attacks. Finally, the experiments are repeated on
ASVspoof2017 database to validate the efficacy of proposed
work.
Index Terms: Speaker Verification (SV), Replay detection,
IITG-MV replay database, Hilbert Envelop, Source+MFCC.

1. Introduction
Automatic speaker verification (ASV) system accepts/rejects a
claimed identity on the basis of provided speech samples [1]. In
the present scenario where modern ASV systems have achieved
state-of-the-art performances, they are highly vulnerable to a
variety of spoof attacks [2]. Spoof attacks are classified as
impersonation, replay, speech synthesis and voice conversion.
Among these attacks, replay attack is very simple, and can be
implemented easily using a high quality recording and play-
back device with little speech processing knowledge. Hence,
the development of robust replay detection methods for ASV
anti-spoofing is currently in progress.

Mostly, footprints of playback and recording devices in the
replay signals were being used for identifying replay speech
samples from the corresponding originals in prior works. In [3],
increment in noise and reverberations in the replay signals from
the surroundings was used for replay attack detection. In [4],
the channel pattern noise from original and replay recordings
was used as an indicator for detecting replay signals. The high
frequency imperfections caused by additional anti-aliasing fil-
tering process during re-recording via microphone were used

for detecting replay signals in [5]. In [6], the authors explored
the evidences from high frequency regions of speech to iden-
tify replay samples. In [7], the channel artifacts present at low
signal-to-noise ratio time instants were used for replay detec-
tion task. In [8], the variations in the spectral envelope dur-
ing transmission through recording and playback devices were
modelled for replay detection. In [9], inclusion of additional
epochs and corresponding strength in the replay signals was
used to discriminate between actual and replay speech samples.
Moreover, a comprehensive study on a set of different conven-
tional and non-conventional features for the development of re-
play detection system has been reported in [10]. Conclusively,
the exploration of excitation source information towards replay
attacks detection has been ignored by the above mentioned prior
works with the exception [9]. LP residual signal as excitation
source parameterization has been widely explored already in lit-
erature such as in studies [11, 12, 13, 14]. Therefore, excitation
source parameterization of LP residual would intuitively be use-
ful for replay attacks detection. The preceding statement is also
supported by developed replay detection system using epoch
(source) feature in the recent prior work [9]. With this moti-
vation, the present study deals with mel-based cepstral domain
parameterization of LP residual for ASV anti-replay spoofing.

In this work, changes in the excitation component of the
speech signal caused by playback devices specifically loud-
speakers have been explored for replay detection task [15, 16].
The LP residual, obtained by LP analysis of speech signal,
mostly contains information about the excitation source [17,
18]. Accordingly, the excitation source component is modelled
using the LP residual and Hilbert envelope of the LP residual
in the form of RMFCC and LPRHEMFCC features to detect
replay speech samples, respectively. From the signal point of
view, the peaks (epochs) look more significant in the Hilbert en-
velope of the LP residual in comparison to the LP residual [19].
Thereby, excitation source parameterization of Hilbert envelope
may be more effective than direct LP residual parameterization.
In this direction, a comparative analysis has been performed for
the combinations RMFCC+MFCC and LPRHEMFCC+MFCC
to analyse the strength of source features towards replay attacks
detection. This is achieved through SV experiments conducted
on self developed IITG-MV replay database. As per our knowl-
edge, the feature LPRHEMFCC (mel based parameterization
of Hilbert envelope of LP residual) is used for the first time in
this study and hence, novel contribution to this work. More
on this, contrarily to current trends on development of stand-
alone countermeasures, the proposed work aims to reject replay
spoofing trials directly on the ASV system. The genuine tri-
als and either zero-effort imposter trials and/or replay trials are
classified using EER decision threshold of the ASV system. The
significant point of interest here in that the proposed approach
does not require a dedicated spoof detection system.
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The rest of the paper is organized as follows: Section 2
presents description of proposed LP residual features for re-
play detection. A comparative analysis on proposed features
has been performed through SV experiments using IITG-MV
database in Section 3. The experimental observations of Sec-
tion 3 are validated using ASVspoof2017 database in Section 4.
The conclusions of the work are reported in Section 5.

2. LP residual based features
In LP model of speech, each speech sample is predicted as a
linear combination of past p samples, where p is the order of
prediction. Each speech sample s(n) is predicted as,

ŝ (n) = −
p∑

k=1

aks (n− k) (1)

where, ŝ(n) is the predicted speech sample and aks are LP
coefficients (LPCs). The error between original and predicted
signal is known as LP residual r(n) and is given by,

r (n) = s (n)− ŝ (n) = s (n) +

p∑

k=1

aks (n− k) (2)

2.1. RMFCC features

Figure 1 shows features extraction steps to obtained RMFCC
feature. Discrete Fourier transform (DFT) is performed to ob-
tained LP residual spectrum. The magnitude of LP residual
spectra is passed through a bank of non-uniform triangular band
pass filters placed on the mel-frequency scale. At the end, dis-
crete cosine transform (DCT) is applied on the logarithm of the
sub-band energies obtained from mel-filters bank to obtained
RMFCC features.

IfR(ejw) is the spectrum of the LP residual r(n), the mag-
nitude of which is passed through mel-filters bank (Mel) for
sub-band energy calculations. Then RMFCC feature (R(k)) is
computed as,

R (k) = DCT [log(Mel(|R(ejw)|)] (3)

2.2. LPRHERMFCC features

The LPRHEMFCC feature involves short-term cepstral pro-
cessing of Hilbert envelope of LP residual signal in mel-domain.
The Hilbert envelope h(n) of LP residual r(n) can be expressed
as the magnitude of a complex time function given by,

h(n) = sqrt(r2(n) + r2h(n)) (4)

where rh(n) is the Hilbert transform of LP residual r(n).
The feature extraction steps to obtained LPRHEMFCC fea-

ture is given in Figure 1. If H(ejw) is the spectrum of the
Hilbert envelope h(n) of LP residual signal, then similar to RM-
FCC feature, LPRHEMFCC feature (H(k)) is computed in the
following way,

H (k) = DCT [log(Mel(|H(ejw)|)] (5)

The source features RMFCC and LPRHEMFCC involve
short-term cepstral domain processing of the LP residual and
Hilbert envelope of the LP residual, respectively with 20ms
framesize and 10ms overlap. Hence, they model the glottal
information averaged over two to three pitch periods [20]. Ac-
cordingly, changes in the excitation source characteristics made

Figure 1: Block diagram showing various steps of extracting
RMFCC and LPRHEMFCC features.

by replay attacks would possibly be captured by both features
and thereby, ensuring their candidature towards developing re-
play detection systems.

3. Experimental Study
3.1. Database Design

In this study, the replay database is manually developed
by using publicly available Indian Institute of Technology
Guwahati Multi-Variability (IITG-MV) speaker recognition
database [21]. The Phase-I (office) and Phase-II (laboratory)
datasets of IITG-MV database are collected using five different
microphone sensors in multiple environment conditions and in
different sessions. Therefore suitable for robust speaker veri-
fication, to design database for replay attack and anti-spoofing
studies like RSR database [22].

The Phase-I and Phase-II datasets of IITG-MV database
contain 148 (112 males and 36 females) non-native English
speakers speech samples, recorded at the rate of 16000 sam-
ples/second. The duration of the speech samples per speaker
varies from 10 to 15 minutes. For this experimental study, we
consider 81 (45 males and 31 females) speakers speech data and
segregate into two groups: Dataset-I and Dataset-II. Dataset-I
includes 5 male and 6 female speakers speech data amounting
to one hour from each gender for building gender-dependent
UBM models. The Dataset-II is developed with 65 speakers
speech data (comprising 40 males and 25 females) for evalua-
tion purpose. Each speaker’s first two minutes speech data are
used for enrollment. The remaining data are converted into sev-
eral segments of 30 seconds duration and used for test trials.
Each test segment of each speaker is used as a genuine trial for
the same target model and an impostor trial against other speak-
ers model of the same gender. This resulted into a huge number
of trials. The detail statistics are summarized in Table 1. Al-
together, there are 42440 trials that include 1274 genuine and
41166 impostor trials. Spoofing an ASV system via replay at-
tempt requires speech recordings from the target claimants only.
Hence, number of replay trials are equal to number of target
genuine trials.

The replay speech samples are generated manually by re-
playing the original data through a high quality CREATIVE-
SBS-A35 loudspeaker (frequency response 100-15000Hz) al-
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Table 1: Summary of the developed IITG-MV replay dataset
used in this work for genuine, impostor and replay trials.

Statistics Male Female Total

Background speakers 05 06 11
Target Speakers 40 25 65
Genuine trials 706 568 1274
Impostor trials 27534 13632 41166

Replay trials (Targets only) 706 568 1274

most in acoustically controlled environment (i.e. inside closed
room with no fan and air condition noise) and re-recorded
through an in-built microphone of HD Webcam C270-Logitech
at the sampling rate of 16000 samples/second. We put very
careful effort in acquiring the good quality replay speech sam-
ples in order to provide more challenging scenario. To verify
the quality of the replay data, the original and replay recordings
are played in front of few participants. They hardly differentiate
between them, ensuring the quality of the replay data.

The quality of the replay recordings can also be verified
by estimating the distortion between actual and corresponding
replay recordings using cepstral distance method [23]. Cep-
stral distance (CSD) represents the average Euclidean distance
between the two recordings and is estimated using standard
short-term cepstral analysis with hamming window of duration
20ms and 10ms overlap. The DC coefficient ‘c0’ is omitted.
Low CSD values characterize high-quality replay recordings.
The mean and standard deviation of CSD values, estimated for
whole 1274 trials (males and females) are given in Table 2. Ta-
ble 8 also contains two additional columns, representing the
CSD values for C1 and C3 out of six evaluation conditions (C1-
C6) of ASVspoof2017 database (in [24], please refer Table 5
and Figure 2). It can be observed that CSD values for the trials
of IITG-MV database are in closed matching with CSD val-
ues of the trials under either C1 or C3 evaluation conditions
of ASVspoof2017 database. Although, both C1 and C3 are of
low category but show wide variation in replay detection perfor-
mance among top ten systems, thereby simulates challenging
evaluation conditions. From this aspect, the developed IITG-
MV replay database provides relatively homogeneous but chal-
lenging evaluation condition similar to either C1 or C3 cate-
gory of ASVspoof2017 database. Hence, it can be considered
as a useful database for spoofing and anti-spoofing studies on
ASV systems in the context of replay attacks. In addition, it
also facilitates the vulnerability study of ASV systems to replay
attacks gender-wise.

3.2. Experimental Setup

Advanced modelling techniques such as, i-vector and DNN
frameworks require large amount of data for training. In con-
trast, classical GMM-UBM [25] works satisfactorily at rela-
tively small amount of training data, and also outperform i-
vector particularly for unknown types of spoof attacks as re-
ported in the study [26]. Moreover, present work is more
related to exploration of discriminatory evidences at the fea-
ture level rather than the model level. Therefore, at this stage
GMM-UBM seems to be good choice at model level to exam-
ine the strength of proposed features for replay detection task.
In this work, a GMM-UBM ASV system is proposed which
uses 39-dimensional (13 static, 13 delta and 13 delta-delta
coefficients, excluding first energy coefficient) RMFCC and

Table 2: Verification of developed IITG-MV replay database
quality with respect to standard ASVspoof2017 database us-
ing following parameters: number of genuine and replay trials,
mean and standard deviation of CSD between actual and re-
play recordings, and quality of playback and recording device
(L=low, M=medium, H=high).

Parameters IITG-MV ASVspoof2017
C1 C2

Genuine trials 1274 1438 2363
Replay trials 1274 1438 2363

CSD(µ) 0.80 0.79 0.77
CSD(σ) 0.16 0.16 0.28

Playback device Quality H L L/M
Recording device Quality M L/M L/M

LPRHEMFCC features as a means of rejecting replay spoof-
ing trials. A reference GMM-UBM ASV system is built using
39-dimensional standard MFCC feature to evaluate the robust-
ness of both source features for ASV anti-spoofing in the form
of (source + MFCC) feature combination. Some important fea-
tures extraction parameter details are: #mel-filters = 24, sam-
pling frequency (fs) = 8kHz, #DCT coefficients = 24, frame-
size = 20ms, frameshift = 10ms, LP order = 10.

3.3. Evaluation Process

The SV performance is measured in terms of equal error rate
(EER), where the false rejection rate (FRR) and false accep-
tance rate (FAR) are equal [27]. In false rejection, a genuine
speaker is classified as an impostor while in false acceptance, an
impostor is accepted as genuine speaker. Replay attackers usu-
ally targets the enrolled speakers to spoof ASV system. Thus,
under replay attacks scenario FAR is more relevant measur-
ing parameter for evaluating the system performance. Accord-
ingly, we have used two metrics: zero-effort false acceptance
rate (ZFAR) and replay attack false acceptance rate (RFAR).
ZFAR and RFAR is related to zero-effort impostor trials and re-
play trials, respectively. The EER or equivalently the ZFAR is
computed by pooling all genuine and zero-effort impostor tri-
als together. We call it as the baseline performance of the ASV
system. Under replay spoofing, all the target trials by actual and
replay speech are considered as genuine speaker trials and im-
postors, respectively. The RFAR is computed using the target
trials by replay speech. The RFAR is measured based on the
fixed threshold (at EER point) of the baseline systems. As same
baseline ASV system is used for both ZFAR and RFAR com-
putation, the difference ‘RFAR-ZFAR’ directly indicates system
vulnerability to replay attacks [2]. In positive sense, it repre-
sents ASV system capability to resist spoof attacks. A smaller
value of ‘RFAR-ZFAR’ indicates better replay detection accu-
racy. Moreover, since same ASV system is used for both base-
line and spoofing tests, the scores and decisions for all genuine
trials will remain unaffected. Consequently, the FRR will re-
main constant, under both conditions. Altogether, ZFAR, RFAR
and their difference ‘RFAR-ZFAR’ can be used as performance
metrics to compare different ASV systems under replay attacks.

3.4. Experimental Results and Discussion

Table 3 shows stand-alone performance of MFCC, RMFCC and
LPRHEMFCC features based ASV systems as well as joint per-
formance of ‘RMFCC+MFCC’ and ‘LPRHEMFCC+MFCC’
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Table 3: ZFAR(%) and RFAR(%) results for different features
based GMM-UBM ASV system. In case of zero-effort imposter
trials the performance is expressed in terms of ZFAR. Under
replay attacks the performance is expressed in terms of RFAR.
The word ‘Difference’ stands for ‘RFAR-ZFAR’.

1. Male

Features ZFAR RFAR Difference

MFCC 2.97 38.81 35.84
RMFCC 5.38 15.72 10.34

LPRHEMFCC 12.62 7.93 4.69
RMFCC+MFCC 2.97 29.46 26.49

LPRHEMFCC+MFCC 2.97 16.71 13.74

2. Female

Features ZFAR RFAR Difference

MFCC 3.69 65.14 61.45
RMFCC 5.46 51.40 45.94

LPRHEMFCC 10.78 22.00 11.22
RMFCC+MFCC 3.69 61.44 57.75

LPRHEMFCC+MFCC 3.69 55.28 51.59

3. Whole-set

Features ZFAR RFAR Difference

MFCC 4.24 54.08 49.84
RMFCC 5.65 31.16 25.51

LPRHEMFCC 13.20 8.00 5.20
RMFCC+MFCC 3.80 41.20 37.51

LPRHEMFCC+MFCC 4.47 32.03 27.56

combinations, under both baseline and replay spoofing test con-
ditions. With reference to corresponding ZFAR performances,
the features MFCC and RMFCC show higher value of RFAR,
indicating considerable degradations in their performances un-
der replay attacks in all cases i.e. males, females and whole-
set. However, opposite patterns are shown by LPRHEMFCC
feature for males and whole-set case, but it can be potentially
acceptable from spoofing point of view. Further, degradations
are relatively more in case of the female speakers as they may
have less spectral distortion than the male speakers.

The contribution of this work is better reflected in case of
combination of source features with MFCC. The baseline ZFAR
performances are same for both the combinations for males and
females cases, and almost same for whole-set case. Therefore,
under replay attacks RFAR and ‘RFAR-ZFAR’ performances
for these combinations are directly comparable. Under re-
play attacks, it is clearly observed that ‘LPRHEMFCC+MFCC’
combination outperforms ‘RMFCC+MFCC’combination by
notable margin in all cases. Thus, from the experimental results
given in Table 3, it can be easily concluded that Hilbert enve-
lope of the LP residual provides better modelling of excitation
source for replay attacks detection than the LP residual.

4. Replay detection experiments using
ASVspoof2017 database

In this section, three stand-alone and two fused replay attacks
detection systems are developed as shown in Table 4. The de-
veloped systems are trained using training-set and tested on
development-set and evaluation-set of standard ASVspoof2017

Table 4: EER(%) Results of the stand-alone and fused replay
attacks detection systems on pooled ASVspoof2017 database.

System Features EER
dev eval

S1 MFCC 16.32 35.03
S2 RMFCC 20.33 29.33
S3 LPRHEMFCC 10.86 30.59

S1+S2 RMFCC+MFCC 16.05 29.29
S1+S3 LPRHEMFCC+MFCC 7.25 28.42

B02 [24] CQCC 10.35 30.60

database. ASVspoof2017 database is a sub-part of original Red-
Dots corpus. Training, development and evaluation sets consist
3016, 1710 and 13306 speech files, respectively. The speech
files and corresponding replay recordings are collected at sam-
pling rate 16000 samples per second and 16-bit resolution per
sample. The features extraction process is same as discussed in
the preceding Section 3.2. However, speech files are processed
at their original 16kHz sampling rate without down-sampling.
Accordingly, LP order (p = 18) is used to get LP residual from
speech signal [17]. GMM-classier is used to discriminate be-
tween actual and replay speech samples.

From the EER results shown in Table 4, system fused sys-
tem (S1+S3) outperforms system (S1+S2). This confirms the
higher potential of Hilbert envelope of the LP residual in reject-
ing replay spoofing trials over the LP residual signal.

5. Conclusions
This work demonstrates the effectiveness of LPRHEMFCC
over RMFCC features in rejecting replay spoofing trials through
SV experiments conducted on self-developed IITG-MV re-
play database. It has been observed that the combination of
LPRHEMFCC+MFCC provides better results as compared to
the combination of RMFCC+MFCC, under replay attacks sce-
nario. Similar pattern of results are also obtain in spoof de-
tection experiment conducted on ASVspoof2017 database, and
hence validates the trueness of experimental outcome obtained
on IITG-MV database. Significance difference in the replay de-
tection performance has been observed in case of development-
set for system ‘S1+S3’ (EER= 7.25%) over system ‘S1+S2’
(EER= 16.05%) . However, in case of evaluation-set the differ-
ence is relatively very low. Further, fused system S1+S3 shows
a relative improvement nearly∼ 7% over baseline CQCC (B02)
system in case of evaluation-set and hence, required further ef-
forts to obtain higher level performance. Future plan is explore
Hilbert phase and advance modelling technique such as i-vector
and DNN techniques for notable enhancement in the perfor-
mance under highly varying acoustic replay attacks conditions.
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