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Abstract
The present paper investigates the effect of different inputs on
the accuracy of a forced alignment tool built using deep neural
networks. Both raw audio samples and Mel-frequency cepstral
coefficients were compared as network inputs. A set of experi-
ments were performed using the TIMIT speech corpus as train-
ing data and its accompanying test data set. The networks con-
sisted of a series of convolutional layers followed by a series of
bidirectional long short-term memory (LSTM) layers. The con-
volutional layers were trained first to act as feature detectors,
after which their weights were frozen. Then, the LSTM lay-
ers were trained to learn the temporal relations in the data. The
current results indicate that networks using raw audio perform
better than those using Mel-frequency cepstral coefficients and
an off-the-shelf forced aligner. Possible explanations for why
the raw audio networks perform better are discussed. We then
lay out potential ways to improve the results of the networks and
conclude with a comparison of human cognition to network ar-
chitecture.
Index Terms: speech recognition, forced alignment, audio seg-
mentation

1. Introduction
Forced alignment has become a common tool in the analysis of
speech data [1]. A forced aligner takes in an audio file and a list
of phones present in the audio signal. It then outputs the tempo-
ral boundaries for each phone. For example, in a recording of
cat, a forced aligner would take the recording and list of [k], [æ],
and [t], and then it would output the timestamps demarcating
when each phone begins and ends. That is, it aligns the phone
labels to their corresponding regions the audio. The present
study is a preliminary exploration into different approaches to
building an acoustic model using a deep neural network to cre-
ate a forced aligner, with special attention paid to the effect of
input type on the aligner performance.

A number of forced aligners already exist. Some rely on
hidden Markov models, such as the Penn Forced Aligner [2], the
ProsodyLab Aligner [3], MAUS [4], and the Montreal Forced
Aligner [1], while Gentle [5] relies on neural networks. To
date, there seems to be no forced alignment tool whose acous-
tic model is openly a deep neural network (it is uncertain how
Gentle structures its neural networks, so it can’t be said whether
they use deep networks or not). It has previously been suggested
that acoustic models using deep learning techniques can outper-
form models using hidden Markov models in speech recogni-
tion tasks [6]. As such, using deep neural networks as acoustic
models for this task should be investigated.

Researchers in automatic speech recognition with neural
networks have previously used Mel-frequency cepstral coeffi-
cients (MFCCs) as input to neural networks [7][6]. Others,
however, have used raw audio samples [9][10][11]. MFCCs
have also previously been found to perform approximately as

well as raw audio for network inputs overall [9]. It is thus un-
certain which of these two representations will perform better
for the purposes of forced alignment. It’s been noted in that
the convolutional layers in some networks seem to be learning
some sort of filter-bank [9], which bears some relation to using
filter-banks when calculating MFCCs.

The goal of the present study is to assess what kind of neural
network architecture and input work best for forced alignment
and compare the results with already available packages for
forced alignment. Based on the history of deep neural networks
outperforming hidden Markov model-based models in speech
recognition tasks, we predict that the deep neural networks will
perform better than hidden Markov model-based forced align-
ers. A forced aligner needs to have high precision to be useful
to researchers in phonetics, since some speech cues of interest
happen at the scale of milliseconds. As such, some attention is
paid to the level of precision a particular forced alignment tool
affords, in addition to more typical accuracy measures used in
automatic speech recognition.

2. Experiment details

Because a comparison between raw audio samples and MFCCs
has yet to be performed for forced alignment, two different neu-
ral networks are trained and compared to each other. The first
network is trained on raw audio samples, and the second, on
MFCCs. To allow for a more even comparison between the
input options, the network architecture is kept as similar as pos-
sible to control for factors related to differing architectures. As
in [9], the network begins with a section of convolutional layers
to serve as feature detectors. Once trained, this convolutional
section’s weights are frozen, and the section is then connected
to another section with bidirectional long short-term memory
(LSTM) layers. This section should learn temporal relation-
ships in the data. The LSTM layers were chosen to be bidirec-
tional because it has been found that bidirectionality can help a
deep neural network perform accurately in speech recognition
[7]. The overall architecture of combining convolutional layers
with LSTM layers was inspired in part by remarks that there
seems to have been just one attested attempt at this architec-
ture before [12]. Further motivation is found in [13], where it’s
stated this kind of architecture allows for faster training than
a deep recurrent neural network with an acceptable accuracy
trade-off because the convolutional layers are light and don’t
require as many mathematical operations to train.

The TIMIT speech corpus was used as training data [14].
We selected the TIMIT corpus because it contains detailed pho-
netically time-aligned transcriptions, and it is used as a bench-
mark test for a number of different experiments in automatic
speech recognition (such as in [7], [8], [9], and [11]).
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2.1. Data preparation

To prepare the data for the raw audio network, each audio file
in the TIMIT corpus (including SA records) was pre-processed
into frames containing 25 ms of samples (for a total of 400 sam-
ples, due to the 16 kHz sampling rate). The frames were pro-
cessed at an interval of 1 ms (so a new frame would start 1 ms
after the previous frame started). The label for the frame was
determined based on what category the majority of the middle
1 ms of samples belonged to. In the case where this middle 1
ms was evenly distributed between two labels, the frame was
assigned the earlier label to favor the duration of a phone over
transition to a different one. Additionally, the audio files were
zero-padded with 12 ms at the start and end so that every 1 ms
frame could be assigned a label. Processing the frames in this
way casts the problem as recognizing the middle 1 ms of the
frame with 12 ms of context on each side of the target 1 ms.
These frames serve as the raw audio input to the network.

To prepare the MFCC input to the network, each audio
file in the TIMIT corpus was pre-processed into frames of 13
MFCCs, 13 delta coefficients, and 13 delta delta coefficients.
The MFCCs were calculated using the Python Speech Features
library [15]. As is the default in the library, the first MFCC was
replaced with the log-energy of the entire frame. As before, the
frame size was 25 ms, and each new frame started 1 ms after
the previous one. The library padded zeros to the end of each
signal so there was a whole number of frames. These MFCCs
can be thought of as a spectrum of a spectrum of the energy
in the frame. The delta coefficients represent the change of the
MFCCs over time, and the delta-delta coefficients represent the
change of the delta coefficients over time.

When determining the frame labels, we used phone collaps-
ings following [16] and mentioned in [7] as standard for full
speech recognition, with one exception. The phone [R] was not
collapsed into a label for silence as suggested because the flap
in connected American English speech does not always create
a period of silence in the acoustic signal [17], so a label for si-
lence would describe this phone poorly and introduce noise into
the silence category. Effectively, this meant that the 61 possible
phones in TIMIT were collapsed into 40 different possibilities
for classification, on the basis of acoustic similarity. For ex-
ample, the closure periods for the oral stops [p], [t], [k], [b],
[d], and [g] were all collapsed into one label, “sil” to indicate
silence, since the periods of occlusion that precede them are
nearly identical, acoustically. While, there may be voicing dur-
ing the closure for the voiced stops [b], [d], and [g], we opted to
keep the simplified phone structure as much as possible.

Finally, 184 utterances (5% of the training data) were ran-
domly selected to be a validation set used to calculate validation
accuracy during training. This 5% remained consistent through-
out the training process.

2.2. Network architectures

Different configurations of the network architecture were im-
plemented and trained using the Keras Python library [18] with
the TensorFlow backend [19]. The hyperparameters for the net-
works were found by random search, as suggested in [20].

Each tested architecture began with a series of 1-
dimensional convolutional layers that had rectified linear unit
(ReLU) activation functions. There were no pooling layers be-
cause they were found to decrease the overall accuracy of the
network. It’s also not necessarily desirable for the results of
the convolutions be time-independent, since the locus of certain
frequency peaks in the raw audio can be a discriminative cue as

to what phone class a given input belongs to, so max-pooling,
for example, might not be helpful.

Connected to this series of convolutional layers were 2 bidi-
rectional LSTM layers, which also had ReLU activation func-
tions. Finally, the network ended in a fully-connected layer with
a softmax activation function. It had 61 neurons, which repre-
sents the number of phone classes that the network was predict-
ing between (though only 40 categories were used as labels),
as is standard in such experiments [7]. The best architecture of
those that were tested is described in detail below.

2.3. Decoding the network output

As currently designed, the neural nets perform frame classifica-
tion, but not forced alignment directly. However, it’s possible to
use a network’s frame classifications for a recording to perform
alignment if the output is decoded. For the present study, the
network output was decoded by the process of finding the most
probable path through the output that would yield the specified
phone sequence.

When an audio file is done being processed by the neural
network, there is a resultant output matrix O that has 61 rows
to represent each possible phone class and T columns, which
are the timesteps in the network, from 1 up to and including T .
From this matrix, the most probable sequence of frame labels
that produce the desired final phone sequence can be determined
with dynamic programming. This decoding process is given in
pseudocode in Algorithm 1. Recall that the desired phone label
sequence, which we will refer to as s, is provided by the user
when running the forced aligner. Assume that the rows of O
can be indexed by their associated phone labels, as well as their
integer index. Computing boundaries between each phone from
the resultant label sequence becomes straightforward because
each label represents a 1 millisecond time step.

Algorithm 1 Decoding neural network output.

1: function DECODE(O, s)
2: Define an n by T zero matrix M , where n = length(s).
3: M [1, 1]← O[s[1], 1]
4: for j from 2 to T do
5: if j < (T − n+ 1) then
6: M [1, j]← O[s[1], j] ∗M [1, j − 1]
7: end if
8: end for
9: for i from 2 to n do

10: for j from 1 to T do
11: if j = i then
12: M [i, j]←M [i− 1, j − 1] ∗O[s[i], j]
13: else if i < j < (T − n+ i) then
14: p← max(M [i− 1, j − 1],M [i, j − 1])
15: M [i, j]← p ∗O[s[i], j]
16: end if
17: end for
18: end for
19: Call argmax(·) on each column of M and store in a.
20: for j from T − 1 to 1 do
21: if ¬(a[j + 1]− 1 ≤ a[j] ≤ a[j + 1]) then
22: a[j]← a[j + 1]
23: end if
24: end for
25: return the phone labels corresponding to the rows of O

indicated by each element in a
26: end function
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2.4. Assessing the forced alignment performance

A network’s accuracy in the forced alignment task can be calcu-
lated by comparing how many of the frame labels from decod-
ing the output match the labels in the test set. We refer to this
measure as the path accuracy, denoted accpath. Formally,

accpath =
nc

nt
, (1)

where nc is the number of frames correctly identified, and nt is
the total number of frames.

2.5. Training the networks

The network hyperparameters were initially found for the raw
audio input. The training began with finding the hyperparame-
ters for the convolutional layers, which were connected to a 61-
neuron fully-connected layer with softmax activation. The order
in which the files would be trained on was shuffled at each train-
ing epoch, and each file’s frame order was shuffled each time it
was fed into the network. The network was tasked with predict-
ing the phone label that corresponds to the frame that was fed
into it. It was trained using categorical cross entropy as a loss
metric, stochastic gradient descent with Keras’ default values as
the optimizer, and a batch size of 256. Each frame was shaped
so that each millisecond of samples (16 samples) was its own
row in the tensor, resulting in a 25 row by 16 column tensor.
Each configuration was monitored with a callback in Keras that
would check the validation accuracy of the network after each
epoch and save the best performing configuration.

Once the convolutional layers were trained, their weights
were frozen, and a new hyperparameter search began. The out-
put layer was removed, the two bidirectional LSTM layers were
added, and then another fully-connected layer with 61 neurons
with softmax activation was added as an output layer. As with
the previous training step, this network used stochastic gradient
descent as its optimizer with Keras’ default values, and its loss
function was categorical cross entropy. The batch size varied a
bit more here due to memory constraints on the network. Each
utterance was split into 256 different batches of equal size, us-
ing zero-padding at the end if necessary to attain a whole num-
ber of batches. The same Keras callback from before was used
to save each trial’s most accurate network based on validation
accuracy. The best configuration overall was found to be 5 lay-
ers of convolutions, with 98, 89, 66, 73, and 47 filters in each
layer, respectively; kernel sizes of 1, 2, 1, 1, and 2 in each layer,
respectively; stride lengths of 1, 1, 1, 2, and 1 in each layer,
respectively; 2 epochs of training before the LSTM layers were
attached leading to a validation accuracy of 51.7%; and 1 epoch
of training once the LSTM section was attached. The LSTM
layers had 64 and 156 units in each layer, respectively.

The MFCC network’s architecture was identical, and the
network was trained in the same manner as the raw audio net-
work with the same hyperparameters, just with MFCCs as input
instead of audio samples. Based on the validation accuracy, the
convolutional section was trained for 1 epoch, and the LSTM
section was trained for 7. We realize that this architecture may
not be ideal for MFCC data and plan other future comparisons.

3. Results
For both of the final networks, accpath, test accuracy on the
TIMIT test set, and the median absolute error on the endpoints
of each segment compared to the TIMIT transcriptions were
calculated. We chose the median absolute error instead of the

mean absolute error because we are interested in how the net-
works perform when they are performing as expected; the mean
absolute error would be affected by outliers and not give as
good of an idea of the performance. Additionally, we chose
the Montreal Forced Aligner to compare the trained networks
against a recently released and fairly accurate forced alignment
tool [1]. Its accpath was reverse engineered from the boundaries
it determined, and its median absolute error were also calcu-
lated from its resulting alignment. Because the Montreal Forced
Aligner’s transcription scheme differed from that of TIMIT, it
was run using the CMU Pronouncing Dictionary to create phone
sequences from the TIMIT orthographic transcriptions. The cal-
culated measures may be seen in Table 1.

Table 1: Comparison measures for each aligner. Montreal
Forced Aligner is represented as “MFA.”

Aligner accpath value Test acc. MAE (s)
Raw audio 74.7% 53.6% 0.008
MFCC 22.0% 0.6% 1.55
MFA 72.1% — 0.1

The accpath is highest for the raw audio network, followed
closely by the Montreal Forced Aligner, and the MFCC net-
work has by far the lowest value. Given the way that the mea-
sure was calculated, this speaks to how well the aligners did
in identifying each millisecond of audio. In terms of precision
of the output boundaries, the median absolute error is remark-
ably lower for the raw audio network than the Montreal Forced
aligner, indicating that its boundaries are tighter to the ground
truth in comparison to the Montreal Forced Aligner. In practice,
this would suggest that the median difference between the raw
audio network’s boundaries and the ground truth would be 8
ms, while it would be 100 ms for the Montreal Forced Aligner.
Given that the accpath value for the raw audio network is as low
as it is suggests that there may be some cases where its bound-
aries are far off the mark, since accpath as defined here is suscep-
tible to outliers. The same may be true for the Montreal Forced
Aligner as well. In terms of the hypotheses that each neural
net will perform better than the Montreal Forced Aligner, it was
borne out that the raw audio network performed marginally bet-
ter, however the MFCC network did not.

Test accuracies for our networks are not competitive with-
state-of-the-art systems that perform framewise phone identifi-
cation, but we provide ours for comparison. Test accuracy is
not calculable for the Montreal Forced Aligner since its frame
identification cannot be readily accessed.

An example of the produced alignments may be seen in Fig-
ure 1. Both the raw audio network and the Montreal Forced
Aligner are producing boundaries that are close to the ground
truth of the TIMIT transcriptions. However, the output of the
MFCC network seems to have made silence the most probable
path for each frame, which will inevitably be right some of the
time, as evidenced by the accpath value.

4. Discussion and conclusion
Given the results, the network trained on raw audio shows
promise for the forced alignment process, surpassing even the
Montreal Forced Aligner. Its markedly better performance in
terms of the median absolute error is indicative of the raw au-
dio network’s promise in this application. The tighter bound-
aries are of use to phoneticians and other researchers in need of
aligned speech data. Since its median absolute error is so com-
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Figure 1: Sample phone alignment from aligners for “she had your.” From top to bottom: ground truth, raw audio network, MFCC
network, Montreal Forced Aligner.

paratively low, it further suggests that when the raw audio net-
work is accurately recognizing the frames, it performs well. Its
performance could be further improved by increasing its frame
identification accuracy. It should be noted, however, that the
Montreal Forced aligner was not trained on speech from the
TIMIT speech corpus, so its results may have suffered slightly
in comparison to the deep networks trained here. It also used a
different transcription scheme, and though we tried to account
for this when determining if it identified a frame correctly, it
may still have affected accuracy score. Future work will address
different transcription schemes more holistically or re-train the
Montreal Forced Aligner on TIMIT for a more fair comparison.

The drastic difference between the raw audio network’s per-
formance and the MFCC network’s suggests as well that the
network may have learned a better representation in the convo-
lutional layers for the raw audio than for the MFCCs or that the
MFCC features the convolutional section learned weren’t very
applicable to the LSTM section. What the performance differ-
ence also means is that the MFCC network needs different hy-
perparameters and/or a different architecture than the raw audio
one does. It is indeed peculiar that the MFCC model did not
come close to matching the performance on the similar task of
phone identification shown in [9] (where a raw audio network
had a 69.47% frame identification accuracy on the TIMIT test
set, and an MFCC model had a 71.80% identification accuracy
on the TIMIT test set, both using a conditional random fields
technique for decoding). More experimentation may reveal a
better architecture and/or hyperparameters for the MFCCs.

On another note, the relative performance of the raw au-
dio model during the different sections of its training seems to
parallel some phenomena that are known about human speech
perception and auditory cognition. Specifically, it’s known that
the process of human speech perception is dynamic and exploits
temporal information and patterns in the acoustic signal [21],
with even some models of speech perception taking this into
account [22][23][24]. The raw audio model’s performance in-
creased once the LSTM layers were added onto it, affording
it the ability to move beyond decontextualized frame classifi-
cation to exploiting the temporal context of the acoustic data
to inform its predictions. This similarity suggests that there is
some relation between how the neural network is mathemati-

cally learning to separate the phone classes and human speech
perception. Ultimately, deep neural networks may prove to be
a useful tool for modeling human predictions about speech; the
information being processed is similar, and the networks seem
to benefit from access to similar information that humans use.

Future research on the connections between neural net-
works and human cognition could perhaps take the form of
repeating speech perception experiments like testing a /da/-/ta/
voice onset time continuum as in [25]. The network’s responses
could be compared with human responses to the same stimuli.
If similar results are found between the network’s and humans’
responses, it could be concluded that deep neural networks use
perceptual information in a way similar to humans. It would fur-
ther suggest that investigating what neural networks learn could
provide further insight into what cues humans might be using in
the process of speech perception.

In sum, forced alignment tools have yet to truly be brought
into the age of deep learning. The present results are a step
in that direction. The performance of the deep networks in
the alignment task show promise, but require more refinement.
Though the results presented here are restricted to only the
TIMIT speech corpus, our modeling process is ongoing, and
we are hopeful that new architecture configurations will pro-
vide even better results. After additional training and testing
on other speech data sets and improving computational effi-
ciency, we intend to release the resultant system as an open-
source command-line utility.
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