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Abstract

In this paper, we present a novel deep neural network (DNN)
based speech enhancement method that uses a harmonic noise
model (HNM) to estimate the clean speech. By utilizing HNM
to model the clean speech in the short-time Fourier transform
domain and extracting some time-frequency features of noisy
speech for the DNN training, the new method predicts the
harmonic and residual amplitudes of clean speech from a set
of noisy speech features. In order to emphasize the impor-
tance of the harmonic component and reduce the effect caused
by the residual, a scaling factor is also introduced and ap-
plied to the residual amplitude. The enhanced speech is re-
constructed with the estimated clean speech amplitude and the
noisy phase of HNM. Experimental results demonstrate that our
proposed HNM-DNN method outperforms two existing DNN
based speech enhancement methods in terms of both speech
quality and intelligibility.
Index Terms: speech enhancement, deep neural network, har-
monic noise model

1. Introduction
In real world environments, clean speech is often corrupted by
a wide range of background noises, which causes problems in
applications including voice communication, automatic speech
recognition and speaker identification. Speech enhancement,
which aims to improve speech quality and intelligibility, has
been intensively studied over the past decades to obtain better
user experience in speech processing, recognition and commu-
nication.

Many traditional speech enhancement methods have been
foused on estimating the short time spectral amplitude (STSA)
of clean speech. Among them, Wiener filtering [1] and mini-
mum mean square error (MMSE) amplitude estimators [2] are
two most well-known techniques. In Wiener filtering approach,
the estimated speech spectrum was obtained by multiplying a
Wiener gain function to the noisy spectrum, where the Wiener
gain was derived by minimizing the mean square error between
the clean and estimated speech spectrums. The MMSE esti-
mator of clean speech was derived by minimizing the statisti-
cal expectation of a cost function that penalizes the error in the
clean speech estimation. These estimators achieve good results
to some extent, but they also cause distortion of speech signals.
In addition, due to inaccuracies in the estimation of speech and
noise statistics, both Wiener filter and MMSE estimator suffer
from residual noise which has an annoying noticeable effect on
the enhanced speech.

Different from the above STSA estimator-based methods,
which mainly focus on the enhancement of speech quality,

time-frequency (TF) masking is a kind of approach that at-
tempts to improve speech intelligibility. This masking tech-
nique amounts to selecting a subset of frequency bins from the
corrupted speech spectra while discarding the rest. Ideal binary
mask (IBM) [3] and ideal ratio mask (IRM) [4] are two well-
known masking techniques in this area, and their performance
depends largely on the quality of TF mask estimation.

Nowadays the deep neural network (DNN) based speech
enhancement methods are getting more and more popular, as
this kind of supervised methods have the potential to deal with
more complex acoustic environment. In [5], a DNN frame-
work was proposed to directly restore the clean speech ampli-
tude by building a mapping function between the log spectral
power (LPS) feature of the noisy speech and that of the clean
speech. By training the DNN with a large set that encompasses
many possible combinations of speech and noise types, the es-
timated speech has significantly better objective and subjective
measures compared to that achieved by conventional MMSE-
based techniques. While using DNN to directly estimate clean
speech amplitude is intuitive, it requires a large training set in
order to form a mapping as accurately as possible. In [6], the
learning target of DNN was turned to estimating IRM, and then
the enhanced speech was obtained by applying the estimated
mask to noisy speech, resulting in a better denoising perfor-
mance. This method has benefited from the masking effect,
namely, it discarded the noise-dominant part and maintained
the speech-dominant part in the mixed signals. On the other
hand, although this method can improve speech intelligibility, it
harms the underlying clean speech at the same time.

Many speech enhancement algorithms ignored the har-
monic structure of speech spectrum, and thus suffered from
a poor enhancement performance, especially in low signal-to-
noise ratio (SNR) situations [7]. It is well-known that using
HNM for modeling the harmonic structure yeilds better intelli-
gibility and quality of synthesized speech. In [8], the authors
proposed a restoration method to retrieve the HNM of original
speech from the damaged version, in which the estimated pa-
rameters of HNM are obtained by utilizing a pre-trained code-
book. In [9], an estimator based on HNM was derived for
speech separation. The proposed estimator aimed to find the
HNM parameters from the pre-trained speakers’ codebooks.
Then, the separated speech is obtained by applying the estima-
tor to mixed signals. Compared to binary mask based separation
algorithms [3], this method achieved a better perceptual speech
quality.

In this paper, we propose for the first time a DNN based
HNM for noise reduction of speech signals in the frequency
domain by exploring the relationship between the HNM param-
eters of noisy speech and that of clean one. In contrast to the
codebook techniques for estimating HNM parameters described
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above, our approach makes use of DNN’s ability of learning
complex non-linear mapping function, that is, using DNN to
learn the HNM parameters of clean speech from the spectrum
features of noisy speech. In addition, the target of our algo-
rithm is different from the above mentioned DNN based denois-
ing methods. Previous methods either attempted to predict the
clean speech amplitude or obtained an estimated mask, while
our approach emphasizes on the harmonic structure of speech.
As a consequence of better restoring the harmonic structure of
speech signals, our algorithm gives better speech quality and
intelligibility, especially in low SNR acoustic environments.

2. Harmonic Noise Model of Speech
HNM of speech was first introduced by Stylianous [10], which
divided the speech into harmonic part and noise or residual part.
In order to distinguish the noise part in HNM from the back-
ground noise, we will call it residual in the rest of the paper.
Thus, the speech signal s (n) can be written as

s (n) = h (n) + r (n) (1)

where h (n) and r (n) represent the harmonic component and
the residual of the speech, respectively.

The harmonic part of speech conveys most of the voiced
speech information and can be modeled as a weighted superpo-
sition of a series of sinusoids at the fundamental frequency f0

and its harmonic frequencies, i.e.,

h (n) =
I∑

i=1

ah,i (n) cos (ϕh,i (n)) (2)

with
ϕh,i (n) = Ωi (n)n+ φi = 2πn

fi
f0

+ φi (3)

where I denotes the number of harmonics, which can be com-
puted as bfs/2f0c, with fs being the sampling frequency
andb c the floor operator, ah,i and ϕh,i are the time-domain am-
plitude and phase of the i-th harmonic component, Ωi the nor-
malized angular frequency and fi = (i+ 1) f0 the harmonic
frequencies. Finally, φi is the initial time domain phase of the
i-th harmonic component.

The residual of speech is obtained by subtracting the har-
monic part from the original speech signal in the time-domain.
For clean speech sx(n), the residual usually accounts for the
non-periodic components of speech signal, such as fricative or
aspiration noise, periodic variations of the glottal excitation and
so on; while for noisy speech sy(n) the residual contains both
non-periodic speech and additive background noise.

The time domain harmonic noise model of speech can be
transformed into short-time discrete Fourier transform (STFT)
domain. The corresponding STFT representation of (1) is de-
noted as

S(l, k) = H(l, k) +R(l, k) (4)

with frame index l and frequency index k. In order to sim-
plify the equations, we will omit l in the remaining discussion.
We denote the complex spectral coefficients of s(n), h(n), and
r(n) by the corresponding capital letters which can be described
in terms of their amplitudes and phases, namely,

S (k) = As (k) ejΦs(k)

H (k) = Ah (k) ejΦh(k)

R (k) = Ar (k) ejΦr(k)

(5)

Our goal in this study is to estimate the amplitude of HNM
of clean speech in the frequency domain, including both the
harmonic amplitude Ah(k) and residual amplitude Ar(k). The
two estimated amplitudes will be combined together with the
phase of the noisy speech to reconstruct the enhanced speech.
The reason to use the noisy phase is because human ear is less
sensitive to the changes of the phase [11]. Although the authors
of [12] showed that using the clean phase for the reconstruction
can improve the quality of the enhanced speech, yet it is difficult
to predict the clean phase in practical applications due to the
randomness property of the phase. Hence in this paper we only
take the amplitude estimation of HNM into consideration.

3. Proposed Speech Enhancement System
The overall block diagram of our speech enhancement system
is depicted in Fig.1. A DNN is employed to find a mapping
between the time-frequency features of noisy speech sy(n) and
the amplitude of HNM of clean speech sx(n) . Our system con-
sists of two stages: training stage and enhancement stage. In
the training stage, we extract noisy speech features as the input
of DNN, and use the clean amplitude of HNM as the target of
DNN. Then DNN is trained to minimize the difference between
the estimated amplitude and the clean amplitude of HNM. In
the enhancement stage, the noisy speech features are extracted
and processed by the well trained DNN to predict the clean am-
plitude of HNM. The enhanced speech is then synthesised using
the estimated clean amplitude of HNM and the noisy phase.

Figure 1: A bolck diagram of proposed speech enhancement
system.

3.1. Speech Features

An ideal feature set is capable of predicting the target of DNN
accurately. A complementary set of features was analysed in
[13]. They are amplitude modulation spectrum (AMS), relative
spectral transform and perceptual linear prediction (RASTA-
PLP), Mel-frequency cepstral coefficients (MFCC) as well as
their deltas, and Gammatone filterbank (GF) energies as well as
their deltas. These features are computed for each frame of the
signal and expected to successfully perform speech separation
tasks.

To make full use of the temporal information of speech,
it is a common way to incorporate features of adjacent time
frames into a single feature vector. Hence, the feature vec-
tor centered at the l-th frame is constructed as F̃ (l) =
[F (l − p) , . . . ,F (l) , . . . ,F (l + p)], where p represents the
number of adjacent frames to be appended on each side.
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3.2. Training Target

Our training target includes harmonic amplitudeAhx and resid-
ual amplitude Arx of clean speech in the frequency domain.
The harmonic amplitude Ahx is computed as

Ahx (k) =

{
Asx (k) , k = bif0N/fsc
0, otherwise

(6)

where Asx is the amplitude of the STFT of clean speech , N is
the length of discrete Fourier transform (DFT), i ∈ {1, 2, ..., I}
the index of harmonics.

We use pitch estimator with amplitude compression (PE-
FAC) [14] to obtain a good estimate of fundamental frequency
f0, as this method can estimate pitch reliably even at low SNRs.
Then, residual amplitude Arx can be obtained by subtracting
Ahx from Asx .

As we stated before, the harmonic part mainly accounts for
the voiced component of the speech signal. So we attempt to
concentrate more on enhancing the harmonic part. To this end,
a scaling factor α ∈ [0, 1] will be applied to the residual ampli-
tude. The residual amplitude remains unsuppressed if we set the
scaling factor to 1, while it is totally discarded when the scaling
factor is set to 0. From our experiments, the favourable scaling
factor is given by

α =

{
1 , q > 0.85√
Arx−Arx,min

Arx,max−Arx,min
, otherwise

(7)

whereArx,min is the minimal residual amplitude in each frame,
Arx,max is the maximum, and q is the ratio of the clean ampli-
tude to the noisy amplitude. A situation where q is under a pre-
set threshold implies that the speech is degraded by the back-
ground noise. On the contrary, if the ratio is above the thresh-
old, we suppose the background noise has only a slight impact
on the speech only, and the residual amplitude remains intact.
In our paper, the threshold is set to 0.85 based on our large ex-
perimentation. Then, the scaled residual amplitude is given by
Ãrx = αArx, which reduces the impact of the residual ampli-
tude on the reconstruction of the enhanced speech, thus giving
better enhancement result.

We use both unscaled target and scaled target in our ex-
periments to demonstrate the effect of the residual. The un-
scaled target is [Ahx, Arx], i.e., the scaling factor is set to 1.
We call this type as basic target. The scaled target is illustrated
by [Ahx, Ãrx], which includes the full harmonic target as the
special case when the scaling factor is set to 0.

3.3. DNN Based Estimation

As Fig.2 depicts, a DNN is trained to learn the mapping from
noisy speech features to the amplitude of the clean speech
HNM. Our DNN consists of one input layer, one output layer
and three hidden layers with 512 units in each layer. The ac-
tivation function used in the hidden layer is the rectified linear
unit (ReLU), while a linear function is used in the output layer.

In this work, the aforementioned AMS, RASTA-PLP,
MFCC and GF are used as a feature set. The input noisy speech
feature vector has dimensionality of R(2p + 1) with the com-
bination of adjacent frames, where R is the dimension of the
feature set of a single frame, which is set to 246, and p is set to
1 in our experiments.

Back propagation is used to train the DNN. The cost func-
tion is defined as the following total mean square error (MSE)

Figure 2: Structure of the proposed DNN framework.

over M speech frames,

1

M

M∑

m=1

[∑

i

(
Âi,hx−Ai,hx

)2

+
∑

j

(
Âj,rx−Aj,rx

)2
]

(8)

which measures the difference between the estimated harmonic
and residual amplitude components and the corresponding clean
speech components for the basic target. In (8), M denotes the
number of frames, m the frame index, i the index of harmonics,
j the index of residuals, Â the estimated HNM amplitude, and
A that of clean speech.

After obtaining the estimated amplitude from the DNN, the
STFT of enhanced speech Ŝx (k) is reconstructed together with
the noisy phases Φsy , i.e.,

Ŝx (k) = Âsx (k) ejΦsy(k) (9)

with
Âsx (k) = Âhx (k) + Ârx (k) (10)

The enhanced speech ŝx (n) can be obtained by performing
the inverse STFT of Ŝx (k). It is important to note that although
(8) and (9) only illustrate the situation where the DNN is trained
with the basic target, the scaled target case can be processed.

4. Experimental Results
4.1. Experimental Setup

In this study, the clean speech is selected from the IEEE corpus
[15]. We choose 300 utterances for training and 80 utterances
for testing. Eight types of noises are picked form NOISEX-92
database [16]. Among them four types (babble, white, bucca-
neer, factory) are regarded as seen noises, and the others (pink,
hfchannel, destroyerops, f16) as unseen noise. In the training
stage, the noisy speech are obtained by mixing clean training
speech with seen noises at four levels of SNRs (-10dB, -5dB,
0dB, 5dB), which results in 4800 utterances. In the testing
stage, both seen noises and unseen noises are mixed with clean
testing speech at the above four SNRs, so the number of noisy
utterances used in enhancement stage is 1280 for seen noise and
1280 for unseen noise, respectively. A 16 kHz sampling rate is
used for each signal. We use hamming window to divide each
signal into 20 ms time frames with an 5 ms frame shift (i.e. 75%
overlap). A 320-point DFT is then computed with each frame
consisting of 161 samples.

We compare our speech enhancement algorithm with two
existing DNN based methods: LPS-DNN [5] and IRM-DNN

3226



[6]. For the proposed HNM-DNN method, three variations are
considered, which correspond to different scaling factors used
in the training stage: bHNM-DNN for the basic case with α =
1, sHNM-DNN for the scaled case in (7) and HM-DNN for the
full harmonic case with α = 0.

Here, we adopt the perceptual evaluation of speech quality
(PESQ) [17] and short-time objective intelligibility (STOI) [18]
for objective assessments for the enhanced speech. PESQ focus
on evlauating speech quality while STOI evaluating speech in-
telligibilty. In addition, the frequency-weighted segmental SNR
(SSNR) [19] is also used.

4.2. Results and Discussions

Table 1 gives the average objective score of different DNN
based speech enhancement algorithms on seen noises. Clearly,
our proposed HNM-DNN method has better overall objective
scores than the other two DNN based methods in most cases,
except for the STOI score of the IRM-DNN in 5dB scenario.
This is because the masking effect of IRM-DNN works well
and enhances the speech intelligibility when the input SNR is
high. However, our HNM-DNN shows a good performance on
STOI scores, since the speech intelligibility is less likely to be
degraded by the noise in high SNR environments. At low SNR
levels, our HNM-DNN achieves better results in terms of all
three metrics, because it emphasizes on restoring the harmonic
structure, leading to a better enhancement for the voiced speech.

The result of HNM-DNN also differs when changing the
value of the scaling factor. Firstly, HM-DNN has the best
SSNR in low SNR cases, because it only aims to better re-
store voiced speech in the noisy speech. However, sHNM-DNN
achieved the best SSNR at high SNRs, since the residual also
contains unvoiced speech information in this case. Totally dis-
card the residual will decrease the enhancement performance.
Secondly, bHNM-DNN performs the best in terms of STOI
metric, since its goal is to model the whole amplitude of the
speech, which preserves the richest information in speech. On
the other hand, sHNM-DNN also achieves similar STOI scores
as bHNM-DNN, but the PESQ scores are much better. This in-
dicates that the scaling factor computed by (7) can suppress the
residual noise in the noisy speech. As a result, sHNM-DNN ap-
pears to have the best performance after considering all aspects
of objective evaluation metrics.

Table 2 shows the average objective score of different DNN
based speech enhancement algorithms on unseen noises. Our
HNM-DNN method still obtains the best objective scores on
the whole. It should be noticed that the LPS-DNN achieves
high SSNR while the PESQ and STOI are not improved appar-
ently. After subjective listening tests, we found that LPS-DNN
removes speech and noise simultaneously in these cases. Al-
though the SSNR is much higher, the PESQ and STOI scores
are not satisfactory.

5. Conclusions
In this paper, HNM-DNN based technique has been proposed
for speech enhancement. Compared with the LPS-DNN and
IRM-DNN techniques, our approach has aimed at recovering
the harmonic structure of the speech, which results in superior
speech quality as well as intelligibility. It is also found that by
adding a scaling factor to the residual amplitude in the train-
ing stage, the speech quality can be further enhanced without
degrading severely the speech intelligibility.

It should be noted that only the amplitude of clean speech

Table 1: Speech enhancement results on seen noisy speeches

-10dB -5dB 0dB 5dB
Noisy 1.093 1.297 1.533 1.821

LPS-DNN 0.871 1.356 1.905 2.369
IRM-DNN 1.427 1.864 2.305 2.672

PESQ HM-DNN 1.424 1.925 2.200 2.460
bHNM-DNN 1.506 1.925 2.362 2.701
sHNM-DNN 1.578 2.012 2.445 2.765

Noisy 0.498 0.586 0.684 0.785
LPS-DNN 0.448 0.598 0.723 0.817
IRM-DNN 0.580 0.715 0.827 0.896

STOI HM-DNN 0.585 0.707 0.791 0.837
bHNM-DNN 0.601 0.730 0.831 0.890
sHNM-DNN 0.591 0.724 0.825 0.884

Noisy -12.277 -10.046 -6.485 -2.092
LPS-DNN -2.067 -0.621 1.498 3.475
IRM-DNN -2.936 -0.009 2.778 5.435

SSNR HM-DNN -1.660 0.643 3.117 4.883
bHNM-DNN -2.462 -0.071 2.923 5.683
sHNM-DNN -2.186 0.270 3.445 6.155

Table 2: Speech enhancement results on unseen noisy speeches

-10dB -5dB 0dB 5dB
Noisy 1.123 1.325 1.556 1.847

LPS-DNN 1.021 1.522 2.019 2.445
IRM-DNN 1.365 1.700 2.051 2.416

PESQ HM-DNN 1.405 1.765 2.078 2.327
bHNM-DNN 1.388 1.734 2.105 2.462
sHNM-DNN 1.442 1.801 2.167 2.512

Noisy 0.516 0.601 0.699 0.798
LPS-DNN 0.518 0.646 0.760 0.838
IRM-DNN 0.553 0.672 0.783 0.868

STOI HM-DNN 0.581 0.697 0.781 0.834
bHNM-DNN 0.580 0.706 0.805 0.874
sHNM-DNN 0.569 0.696 0.798 0.868

Noisy -12.672 -10.237 -6.608 -2.129
LPS-DNN -1.003 0.428 2.378 3.981
IRM-DNN -8.374 -5.104 -1.198 2.824

SSNR HM-DNN -4.166 -0.967 2.057 4.634
bHNM-DNN -6.320 -3.066 0.381 3.894
sHNM-DNN -6.037 -2.673 1.067 4.587

HNM has been estimated in our method, while the phase re-
mains the same as the noisy speech HNM. One could obtain a
better performance by synthesizing the enhanced speech with
the phase of the clean speech HNM. In that case, however,
we need to make special effort to estimate the phase of the
clean speech HNM, which obviously increases the computa-
tional complexity of the enhancement system.
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