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Abstract 

Articulatory visualization aims at providing precise visual 
information of the speech organs (tongue, lips, and velum) that 
accompany with speech signals. It is often critical in 
fundamental studies and certain applications. To construct an 
articulatory visualization system, the profile of the speech 
organs must be segmented from images acquired by various 
types of medical equipments. In this paper, a geometrically 
constrained snake model is proposed to segment tongue 
profiles from mid-sagittal MRI to deal with the situation in 
which the tongue contacts with the surrounding structures and 
the target object with inhomogeneity nature. The result 
indicates that the proposed method improves segmentation 
performance significantly compared with the traditional snake 
model. 

Index Terms: articulatory visualization, tongue segmentation, 
geometrically constrained snake model 

1. Introduction 

Most of the speech apparatus are hidden in the oral cavity, 
which makes it difficult to observe the profiles and 
movements of the speech apparatus directly. Therefore, the 
visualization of vocal tract and articulators are of great interest 
in speech visualization and pathological speech analysis. 
Magnetic resonance imaging (MRI) is the state-of-the-art 
modality for obtaining the vocal tract and articulators 
observation, due to its noninvasive and non-hazardous nature. 
In literature, a number of articulatory models are constructed 
based on the manually tracked articulators’/vocal tract’s 
profiles from MR images. However, manual annotation of 
speech organs (vocal tract) is cumbersome and apt to 
introduce artifacts in the extracted profiles. Hence, the 
segmentation of the articulators/vocal tract from MR images is 
a very important topic in articulation visualization and related 
area. 

The tongue, is one of the main articulators. Its modeling 
helps to study the mechanism of speech production and 
rehabilitation of person with speech impairment.  A number of 
works have been conducted to segment the tongue out of MRI 
images automatically. Bresch et al. [1] employed the snake 
model to automatically extract the midsagittal vocal tract 
outline from real-time magnetic resonance images (RT-MRI).  
Peng et al. [2] proposed a shape-based (where the shape priors 
were obtained by principal component analysis on a data set of 
39 manually delineated tongue contour of a reference speaker) 
variational framework to curve evolution for the segmentation 
of tongue contours from mid-sagittal images. The final 
contour of the tongue was obtained by minimizing the total 
energy function that includes both global and local image 

statistics. Eryildirim and Berger [3] improved Peng’s work [2] 
by incorporating physical constraints on the extremities of the 
tongue into the segmentation process. Proctor et al. [4] 
described a method of segmentation of RT-MRI data for 
geometric analysis of vocal tract, where the tissue-airway 
boundary was estimated based on an estimated vocal-tract 
midline and the intensity profile on each grid line. However, 
the tissue-airway boundary extracted by that method had 
obvious visual errors when it was blurred or even missing 
(tongue contacts other articulators during articulation). Hewer 
et al. [5] proposed a hybrid approach to extract a 3D tongue 
from 3D or 2D MRI scans of the vocal tract during the speech, 
which combines unsupervised image segmentation with a 
mesh deformation technique. Since the mesh deformation can 
be applied even with a sparse point cloud, Hewer’s method 
was possible to extract realistic 3D tongue shapes even from 
the 2D video frames of real-time MRI. Krishna et al. [6] 
introduced a convolutional neural network with an encoder-
decoder architecture to jointly detect the relevant air-tissue 
boundaries. A greedy search algorithm to draw contours.  

Most of the above work deal with the tongue/vocal-tract 
profile in the midsagittal plane. However, the tongue is a 
flexible and active speech organ. It deforms and moves during 
speech production process. It frequently contacts with 
surrounding tissues when producing speech. In addition, the 
quality of acquired MRI image is usually not good, which 
means the boundary between the target object and background 
is blurred and the grayscale inside the target object is 
nonhomogeneous. The factors mentioned hereinbefore makes 
the task of tongue segmentation more difficult. Figure 1 gives 
an example of an MR image of articulation and the edge 
detection result by conventional gradient method. On the one 
hand, one can see that the gray scale of the region of interest is 
inhomogeneous. Several edges can be detected in the region of 
the tongue, and the magnitude of the gradient at some edges 
inside the tongue region is even stronger than the that of the 
target tongue profile edge. This makes it difficult to extract 
tongue contour with the conventional methods. On the other 
hand, tongue frequently contacts with surrounding soft speech 
organs (for example, the velum and the pharyngeal wall). 
When the tongue contacts with other tissues, the boundary 
between different speech organs is blurred. This makes it 
extremely challenging to segment tongue in this circumstance 
even for human annotator. 

To tackle these issues, it is necessary to incorporate the 
anatomical knowledge of tongue into the tongue segmentation 
process.  In this study, an improved snake model is adopted to 
segment the tongue from MR images, where the smoothness 
nature of the tongue is considered by the internal energy of the 
conventional model and the anatomical knowledge is taken 
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into account by incorporating geometrical constraints between 
tongue contour and anatomical landmarks. 

        

Figure 1: The mid-sagittal MRI slice of vocal tract profile and 
the edge detection result 

2. Methods 

2.1. Conventional snake model 

SNAKE is a kind of model that defines a parametrical curve in 
an image domain, and evolves curve through minimizing a 
predefined energy function. The curve with the minimum 
energy is the ultimately extracted contour. The traditional 
SNAKE firstly defines [7] a curve as [0,1](s)= (x(s), y(s)),sv , 
and evolves contour through the spatial domain of an image to 
minimize the energy function: 
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where α and β are weighting parameters that control the 

snake’s tension and rigidity, respectively,  '| (s)|v and ''| (s)|v

denote the first and second derivative of ( )sv with respect to s.                     
The first term is called elastic energy and the second is 
bending energy. These two items are called internal forces, 
which are used to control the elastic deformation and maintain 
the continuity and smoothness of the contour. They are only 
related to the shape of the SNAKE rather than image. The 
external energy function extE  is derived from the image and 

takes the smaller values at the positions of interest, such as 
edges. Given a grayscale image ( )I x, y , viewed as a function 

of continuous position variables ( )x, y , a typical external 
energy that leads an active contour toward edges is designed 
as: 

 21

1
y)I(x,y)(x,Gy)(x,E σext 

                          

(2) 

where 
1
( )σG x, y is a two-dimensional Gaussian function with 

standard deviation 1σ , and   is the gradient operator. It is 

easy to see that large 1σ  helps to increase the capture range of 

the external force, and its side effects are to blur the edges in 
the images. In real cases, a large 1σ is often used.  

2.2. Geometric constraint 

To overcome the shortcomings of the conventional SNAKE, a 
new constraint, geometric constraint, is proposed and 
incorporated into the conventional SNAKE model. The 
geometric constraint is formulated as the distance between the 
contour and a set of geometric points (as shown in Eq. 3) [8].  
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where ( , )i ix y  is the coordinate of the ith predefined landmark 

close to the boundary of the target object. By definition, in the 

whole image domain, d(x, y) increases when the target contour 
deviates from the landmarks and decreases to zero when the 
target contour approximate the geometric landmarks. 
Therefore, this geometric constraint helps to attract the 
contour converge to target position globally. In the end, the 
external force is formulated as a combination of traditional 
gradient and geometric distance (as shown in Eq. 4).
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where γ  and δ are nonnegative weighting coefficients to 
balance these two terms. The model is able to find the contour 
by minimizing the energy E such that the boundaries of the 
region of interest are detected simultaneously around 0d  . 

In some circumstances, the medical image contains both 
strong and weak edges, but the real boundary of the interest 
locates at one the weak edges. The conventional SNAKEs, 
such as the distance snake [9] and the GVF snake [10], always 
step through the weak edge and stop at the strong edge, and 
give undesired boundary. This issue can be largely alleviated 
by the proposed geometric constraint since the positions of the 
landmarks are given near the actual boundary. And the 
contour eventually converges to the neighborhood of these 
landmarks to approximate the real boundary even if the edge 
is weak.   

3. Experiments 

3.1. Data Description 

Three datasets are used in our experiment to evaluate the 
performance of the proposed method. Dataset 1, 2 and 3 are 
MR image data recorded with different scanning parameters. 
The first dataset is MR image database of Japanese vowel 
production recorded at the Brain Activity Imaging Center, 
ATR-Promotions [11]. The MRI data were obtained using a 
Shimadzu Marconi MAGNEX ECLIPSE 1.5 T Power Drive 
250 system. An atlas array coil was used for acquiring MRI 
data of the subject’s head and neck regions. The imaging 
sequence was a sagittal fast spin echo series with 2.0 mm slice 
thickness, no slice gap, no averaging, 256×256 mm field of 
view (FOV), 512×512 pixel image size, 51 slices, 11 ms echo 
time (TE) and 3,000 ms repetition time (TR). During the scan, 
the subject was asked to repeat steady phonation 64 times for 
each vowel, which took approximately seven minutes. 

The second dataset is recorded at the Beijing Normal 
University with a SIEMENS Trio A Tim 3T system. The 
parameters used in the MRI scans were as follows: 64 ms TE, 
340 ms TR, 31 sagittal slice planes, 3 mm slice thickness, 3.6 
mm slice interval, averaged once, 256×256 mm FOV, and 
192×192 pixel image size. The rightmost and leftmost planes 
are located at 54 mm from the midsagittal plane. 36 Chinese 
vowels (9 vowels with 4 different tones) and 73 consonants in 
a symmetric VCV (vowel-consonants-vowel) sequence are 
acquired [12]. All the articulations were artificially sustained 
during the 10s acquisition time. 

The third dataset is USC-TIMIT database [13] recorded 
for a subject M1 on a Signa Excite HD 1.5T scanner with 
gradients capable of the 40mT/m amplitude and 150mT/m/ms 
slew rate. The main parameters used in the MRI scans were 
TR= 6.164 ms, FOV=200×200 mm. Each frame shows the 
mid-sagittal slice of a single speaker and consists of 68×68 
pixels with a pixel size of 2.9× 2.9 mm. Since the image size 
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is too small, the data actually used in the analysis is 
interpolated to 256×256 pixels with cubic spline interpolation. 

        

Figure 2: Tongue image in dataset 1 and grayscale histogram 

        

Figure 3: Tongue image in dataset 2 and grayscale histogram 

        

Figure 4: Tongue image in dataset 3 and grayscale histogram 

The regions of interest of representative images in three 
datasets are shown in the left panels of Figure 2, Figure 3, and 
Figure 4, respectively. As shown in the left panels of the 
above figures, the qualities of the images of different data sets 
are quite different. The difference between tongue and airway 
is very clear, and the pixels in the tongue region is almost 
homogeneous. As shown in Figure 3, the pixels in the tongue 
region is inhomogeneous, which results in several edges the in 
the tongue region. Another issue is that the contrasts between 
background and tongue in images some dataset are difficult to 
discern (as shown in the left panel of Figure 3 and Figure 4). 
The corresponding histograms of pixels are shown in the right 
panels. The red lines indicate the mean gray scale of the pixels 
at the border of the target object (tongue). The latter two 
situations are very common in collected MR image datasets. 
These result in that the profile obtained by conventional 
methods is likely to converge to the unwanted position rather 
than the real boundary. Hence, it is necessary to consider these 
circumstances when conducting tongue segmentation.  

3.2. Experimental setting 

In order to assess the performance of the geometrically 
constrained SNAKE model, the following analyses were 
carried out on these three types of images. First, the region of 
interest of an MR image is selected. Then, geometric 
landmarks are specified at the places where the tongue contact 
with surrounding tissues or the curvature of the tongue 
boundary changes rapidly. The same initial contour of two 
models is obtained by interpolating between geometric 

landmarks. Next, the parameters of the energy function are 
tuned. Specifically, the initial parameter settings are manually 
selected based on the experience on each dataset. The 
parameters are adjusted one by one sequentially. When a 
parameter is under adjusting, the other parameters are fixed. 
To objectively evaluate the performance, the Dice similarity 
coefficient (DSC) [14], is adopted as the quantitative measure 
(as shown in Eq. 5).  

2 G I
DSC =

G I




                                                         (5) 

where G is the region enclosed by the ground truth profile, and 
I is the region of interest segmented out by the SNAKE. The 
DSC measures the amount of overlap between two 
segmentations. It equals 1 when the regions contained inside 
by the both contours coincide and 0 when they are completely 
different.  

 

Figure 5: DSC Line Chart 

 

Figure 6: Algorithm flowchart 

For example, to empirically determine appropriate value 
for the geometric constraint weight δ , the DSC is calculated 
for an image randomly selected from the second dataset ( α  = 

0.1, β = 0.1, 1σ = 8, 2σ = 8, γ = 5). Figure 5 shows the 

performance of the proposed model by varying the parameter 
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δ . The best performance of the proposed model is obtained 

when δ  equals 0.3. 

When the parameters are determined, the Eq.4 is 
discretized. At last, two equations with pentadiagonal banded 
matrixes are constructed and solved iteratively [7]. The 
proposed contour segmentation process is summarized in 
Figure 6.  

4. Result  

The geometric landmarks are indicated by red circles in the 
left panels of Figure 7, Figure 8 and Figure 9. The results 
obtained by the conventional SNAKE (red contour) and the 
proposed SNAKE (green contour) are shown in the right 
panels.  

        

Figure 7: Geometric landmarks on the image in dataset 1 and 
the obtained tongue contours 

        

Figure 8: Geometric landmarks on the image in dataset 2 and 
the obtained tongue contours 

        

Figure 9: Geometric landmarks on the image in dataset 3 and 
the obtained tongue contours 

One can see that the proposed model achieves better 
segmentation performance compared with the traditional one. 
Specifically, in Figure 7, the traditional SNAKE cannot 
distinguish the epiglottal cartilage from the tongue despite of 
the good image quality, while the geometrically constrained 
ones successfully delineate the boundary between tongue and 
epiglottis. In the right panel of Figure 8, at the anterior part, 
the traditional SNAKE converges to the boundary to between 
teeth and airway, rather than the boundary between the tongue 
tip and airway. At the posterior part, the tongue traditional 
snake converges to a relatively stronger edge in the tongue 
region rather than the boundary between the tongue root and 
the airway. The proposed model can successfully deal with 

these situations. Figure 9 illustrates that the traditional 
SNAKE cannot separate the tongue and the chin due to 
blurred boundaries and similar gray level of the pixels. 
However, this problem is effectively dealt with the 
geometrically constrained SNAKE model. 

        

Figure 10: Boxplot of DSC values with or without the 
geometric constraint 

A further quantitative measurement was conducted based 
on 50 images selected from the second dataset, respectively. 
The DSC values of the model with or without the geometric 
constraint are calculated for all the selected images. The 
results are shown in Figure 10. The T-test (p=0.05) justified 
that the difference of the performance between traditional 

SNAKE model ( δ = 0) and geometrically constrained model 

( δ = 0.3) are statistically significant. Similar results are also 
obtained in the other two datasets. In summary, the proposed 
model has an obvious advantage over the conventional snake 
model.  

5. Conclusions 

This paper presents a geometrically constrained snake model 
to extract the tongue contour from MR images with various 
qualities. The proposed approach can effectively deal with the 
issues such as the difficulty of segmentation when the tongue 
is in contact with surrounding tissues and has complicated or 
blurred boundaries. In addition, the quantitative evaluation 
indicates that the proposed model outperforms the traditional 
SNAKE model in the sense of Dice similarity measure (DSC). 
In the future, other MRI slices rather than the mid-sagittal 
slices will be considered for three- dimensional tongue 
segmentation.   
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