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Abstract
Sequence-to-sequence attention-based models have recently
shown very promising results on automatic speech recognition
(ASR) tasks, which integrate an acoustic, pronunciation and
language model into a single neural network. In these mod-
els, the Transformer, a new sequence-to-sequence attention-
based model relying entirely on self-attention without using
RNNs or convolutions, achieves a new single-model state-of-
the-art BLEU on neural machine translation (NMT) tasks. S-
ince the outstanding performance of the Transformer, we extend
it to speech and concentrate on it as the basic architecture of
sequence-to-sequence attention-based model on Mandarin Chi-
nese ASR tasks. Furthermore, we investigate a comparison be-
tween syllable based model and context-independent phoneme
(CI-phoneme) based model with the Transformer in Mandarin
Chinese. Additionally, a greedy cascading decoder with the
Transformer is proposed for mapping CI-phoneme sequences
and syllable sequences into word sequences. Experiments on
HKUST datasets demonstrate that syllable based model with
the Transformer performs better than CI-phoneme based coun-
terpart, and achieves a character error rate (CER) of 28.77%,
which is competitive to the state-of-the-art CER of 28.0% by
the joint CTC-attention based encoder-decoder network.
Index Terms: ASR, multi-head attention, syllable based acous-
tic modeling, sequence-to-sequence

1. Introduction
Experts have shown significant interest in the area of sequence-
to-sequence modeling with attention [1, 2, 3, 4] on ASR tasks
in recent years. Sequence-to-sequence attention-based models
integrate separate acoustic, pronunciation and language models
of a conventional ASR system into a single neural network [5]
and do not make the conditional independence assumptions as
in standard hidden Markov based model [6].

Sequence-to-sequence attention-based models are com-
monly comprised of an encoder, which consists of multiple re-
current neural network (RNN) layers that model the acoustics,
and a decoder, which consists of one or more RNN layers that
predict the output sub-word sequence. An attention layer acts
as the interface between the encoder and the decoder: it selects
frames in the encoder representation that the decoder should at-
tend to in order to predict the next sub-word unit [5]. However,
RNNs maintain a hidden state of the entire past that prevents
parallel computation within a sequence. In order to reduce se-
quential computation, the model architecture of the Transformer
has been proposed in [7]. This model architecture eschews re-
currence and instead relies entirely on an attention mechanism
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to draw global dependencies between input and output, which
allows for significantly more parallelization and achieves a new
single-model state-of-the-art BLEU on NMT tasks [7]. Since
the outstanding performance of the Transformer, this paper fo-
cuses on it as the basic architecture of sequence-to-sequence
attention-based model on Mandarin Chinese ASR tasks.

Recently various modeling units of sequence-to-sequence
attention-based models have been studied on English ASR
tasks, such as graphemes, CI-phonemes, context-dependent
phonemes and word piece models [1, 5, 8]. However, few
related works have been explored by sequence-to-sequence
attention-based models on Mandarin Chinese ASR tasks. As
we know, Mandarin Chinese is a syllable-based language and
syllables are their logical unit of pronunciation. These syllables
have a fixed number (around 1400 pinyins with tones are used in
this work) and each written character corresponds to a syllable.
In addition, syllables are a longer linguistic unit, which reduces
the difficulty of syllable choices in the decoder by sequence-to-
sequence attention-based models. Moreover, syllables have the
advantage of avoiding out-of-vocabulary (OOV) problem.

Due to these advantages of syllables, we are concerned
with syllables as the modeling unit in this paper and investigate
a comparison between CI-phoneme based model and syllable
based model with the Transformer on Mandarin Chinese ASR
tasks. Moreover, Since we investigate the comparison between
CI-phonemes and syllables, these CI-phoneme sequences or
syllable sequences from the Transformer have to be converted
into word sequences for the performance comparison in terms
of CER. The conversion from CI-phoneme sequences or sylla-
ble sequences to word sequences can be regarded as a sequence-
to-sequence task, which is modeled by the Transformer in this
paper. Then we propose a greedy cascading decoder with the
Transformer to maximize the posterior probability Pr(W |X)
approximately. Experiments on HKUST datasets reveal that
the Transformer performs very well on Mandarin Chinese ASR
tasks. Moreover, we experimentally confirm that syllable based
model with the Transformer can outperform CI-phoneme based
counterpart, and achieve a CER of 28.77%, which is compet-
itive to the state-of-the-art CER of 28.0% by the joint CTC-
attention based encoder-decoder network [9].

The rest of the paper is organized as follows. After an
overview of the related work in Section 2, Section 3 describes
the proposed method in detail. we then show experimental re-
sults in Section 4 and conclude this work in Section 5.

2. Related work
Sequence-to-sequence attention-based models have shown very
encouraging results on English ASR tasks [1, 8, 10]. Howev-
er, it is quite difficult to apply it to Mandarin Chinese ASR
tasks. In [11], Chan et al. proposed Character-Pinyin sequence-

Interspeech 2018
2-6 September 2018, Hyderabad

791 10.21437/Interspeech.2018-1107

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1107.html


to-sequence attention-based model on Mandarin Chinese ASR
tasks. The Pinyin information was only used during training for
improving the performance of the character model. Instead of
using joint Character-Pinyin model, [12] directly used Chinese
characters as network output by mapping the one-hot charac-
ter representation to an embedding vector via a neural network
layer.

In this paper, we are concerned with syllables as the mod-
eling unit. Acoustic models using syllables as the modeling
unit have been investigated for a long time [13, 14, 15]. Gana-
pathiraju et al. have first shown that syllable based acoustic
models can outperform context dependent phone based acous-
tic models with GMM [14]. Wu et al. experimented on sylla-
ble based context dependent Chinese acoustic model and dis-
covered that context dependent syllable based acoustic models
can show promising performance [15]. Qu et al. [13] explored
the CTC-SMBR-LSTM using syllables as outputs and verified
that syllable based CTC model can perform better than CI-
phoneme based CTC model on Mandarin Chinese ASR tasks.
Inspired by [13], we extend their work from CTC based models
to sequence-to-sequence attention-based models.

Using syllables as the modeling unit, it is natural to consid-
er the conversion from Chinese syllable sequences to Chinese
word sequences as a task of labelling unsegmented sequence
data. Liu et al. [16] proposed RNN based supervised sequence
labelling method with CTC algorithm to achieve a direct con-
version from syllable sequences to word sequences.

3. System overview
3.1. Transformer model

The Transformer model architecture is the same as sequence-to-
sequence attention-based models except relying entirely on self-
attention and position-wise, fully connected layers for both the
encoder and decoder [7]. The encoder maps an input sequence
of symbol representations x = (x1, ..., xn) to a sequence of con-
tinuous representations z = (z1, ..., zn). Given z, the decoder
then generates an output sequence y = (y1, ..., ym) of symbols
one element at a time.

3.1.1. Multi-head attention

An attention function maps a query and a set of key-value pairs
to an output, where the query, keys, values, and output are all
vectors. The output is computed as a weighted sum of the val-
ues, where the weight assigned to each value is computed by a
compatibility function of the query with the corresponding key
[7]. Scaled dot-product attention is adopted as the basic atten-
tion function in the Transformer, which describes (1):

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

Where the dimension of query Q and key K are the same, which
are dk, and dimension of value V is dv .

Instead of performing a single attention function, the Trans-
former employs the multi-head attention (MHA) which projects
the queries, keys and values h times with different, learned lin-
ear projections to dk, dk and dv dimensions. On each of these
projected versions of queries, keys and values, the basic atten-
tion function is performed in parallel, yielding dv-dimensional
output values. These are concatenated and projected again, re-
sulting in the final values. The equations can be represented as
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Figure 1: The architecture of the ASR Transformer.

follows [7]:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2)

where headi = Attention
(
QWQ

i ,KW
K
i , V WV

i

)
(3)

Where the projections are parameter matrices WQ
i ∈

Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv , WO ∈
Rhdv×dmodel , h is the number of heads, and dmodel is the mod-
el dimension.

MHA behaves like ensembles of relatively small attentions
to allow the model to jointly attend to information from dif-
ferent representation subspaces at different positions, which is
beneficial to learn complicated alignments between the encoder
and decoder.

3.1.2. Transformer model architecture

The architecture of the ASR Transformer is shown in Figure 1,
which stacks MHA and position-wise, fully connected layers
for both the encode and decoder. The encoder is composed of a
stack of N identical layers. Each layer has two sub-layers. The
first is a MHA, and the second is a position-wise fully connect-
ed feed-forward network. Residual connections are employed
around each of the two sub-layers, followed by a layer normal-
ization. The decoder is similar to the encoder except inserting
a third sub-layer to perform a MHA over the output of the en-
coder stack. To prevent leftward information flow and preserve
the auto-regressive property in the decoder, the self-attention
sub-layers in the decoder mask out all values corresponding to
illegal connections. In addition, positional encodings [7] are
added to the input at the bottoms of these encoder and decoder
stacks, which inject some information about the relative or ab-
solute position in the sequence to make use of the order of the
sequence.
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Since our ASR experiments use 80-dimensional log-Mel
filterbank features, we explore a linear transformation with a
layer normalization to convert the input dimension to the mod-
el dimension dmodel for dimension matching, which is marked
out by a dotted line in Figure 1.

3.2. Greedy cascading decoder with the Transformer

As syllables and CI-phonemes are investigated in this paper, the
CI-phoneme sequences or syllable sequences have to be con-
verted into word sequences using a lexicon during beam-search
decoding.

The speech recognition problem can be defined as the prob-
lem of finding word sequence W that maximizes posterior prob-
ability Pr(W |X) given observation X , and can transform as
follows [17].

W̃ = argmax
W

Pr(W |X) (4)

= argmax
W

∑

s

Pr(W |s)Pr(s|X) (5)

≈ argmax
W

Pr(W |s)Pr(s|X) (6)

Here, Pr(s|X) is the probability from observation X to sub-
word unit sequence s, Pr(W |s) is the the probability from sub-
word unit sequence s to word sequence W .

According to equation (6), we propose that both Pr(s|X)
and Pr(W |s) can be regarded as sequence-to-sequence trans-
formations, which can be modeled by sequence-to-sequence
attention-based models, specifically the Transformer is used in
the paper.

Then, the greedy cascading decoder with the Transformer
is proposed to directly estimate equation (6). First, the best sub-
word unit sequence s is calculated by the Transformer from
observation X to sub-word unit sequence with beam size β.
And then, the best word sequence W is chosen by the Trans-
former from sub-word unit sequence to word sequence with
beam size γ. Through cascading two sequence-to-sequence
attention-based models, we assume that equation (6) can be ap-
proximated.

In this work we employ β = 13 and γ = 6.

4. Experiment
4.1. Data

The HKUST corpus (LDC2005S15, LDC2005T32), a corpus
of Mandarin Chinese conversational telephone speech, is col-
lected and transcribed by Hong Kong University of Science and
Technology (HKUST) [18], which contains 150-hour speech,
and 873 calls in the training set and 24 calls in the test set. All
experiments are conducted using 80-dimensional log-Mel filter-
bank features, computed with a 25ms window and shifted every
10ms. The features are normalized via mean subtraction and
variance normalization on the speaker basis. Similar to [19, 20],
at the current frame t, these features are stacked with 3 frames
to the left and downsampled to a 30ms frame rate.

4.2. Training

We perform our experiments on the base model and big model
(i.e. D512-H8 and D1024-H16 respectively) of the Transformer
from [7]. The basic architecture of these two models is the same
but different parameters setting. Table 1 lists the experimental
parameters between these two models. The Adam algorithm

[21] with gradient clipping and warmup is used for optimiza-
tion. During training, label smoothing of value εls = 0.1 is
employed [22].

Table 1: Experimental parameters configuration.

model N dmodel h dk dv warmup
D512-H8 6 512 8 64 64 4000 steps

D1024-H16 6 1024 16 64 64 12000 steps

First, for the Transformer from observation X to sub-word
unit sequence, 118 CI-phonemes without silence (phonemes
with tones) are employed in the CI-phoneme based experiments
and 1384 syllables (pinyins with tones) in the syllable based
experiments. Extra tokens (i.e. an unknown token (<UN-
K>), a padding token (<PAD>), and sentence start and end
tokens (<S>/<\S>)) are appended to the outputs, making
the total number of outputs 122 and 1388 respectively in the
CI-phoneme based model and syllable based model. Second,
for the Transformer from sub-word unit sequence to word se-
quence, we collect all words from the training data together
with appended extra tokens and the total number of outputs is
28444. In our experiments, we only train the Transformer from
sub-word unit sequence to word sequence by the base model.

Standard tied-state cross-word triphone GMM-HMMs are
first trained with maximum likelihood estimation to generate
CI-phoneme alignments on training set and test set for han-
dling multiple pronunciations of the same word in Mandarin
Chinese. we then generate syllable alignments through these
CI-phoneme alignments according to the lexicon. Finally, we
proceed to train the Transformer with these alignments.

In order to verify the effectiveness of the greedy cascading
decoder proposed in this paper, the CI-phoneme and syllable
alignments on test data are converted into word sequences using
the trained Pr(W |s) models. We can get a CER of 4.70% on
the CI-phoneme based model and 4.15% on the syllable based
model respectively, which are the lower bounds of our exper-
iments. If sub-word unit sequences, calculated by the Trans-
former from observation X to sub-word unit sequence s, can
approximate to these corresponding alignments, our experimen-
tal results can approach the lower bounds using the greedy cas-
cading decoder.

Figure 2 visualizes the self-attention alignments in the en-
coder layer and the vanilla attention alignments in the encoder-
decoder layer by Tensorflow [23]. As can be seen in the figure,
both self-attention matrix and vanilla attention matrix appear
very localized, which let us to understand how changing the at-
tention window influences the CER.

4.3. Results of CI-phoneme and syllable based model

Our results are summarized in Table 2. As can be seen in the
table, CI-phoneme and syllable based model with the Trans-
former can achieve competitive results on HKUST datasets in
terms of CER. It reveals that the Transformer is very suitable
for the ASR task since its powerful sequence modeling capa-
bility, although it relies entirely on self-attention without us-
ing RNNs or convolutions. Furthermore, we note here that the
CER of syllable based model outperforms that of correspond-
ing CI-phoneme based model. The results suggest that the sub-
word unit of syllables is a better modeling unit in sequence-
to-sequence attention-based models on Mandarin Chinese ASR
tasks compared to the sub-word unit of CI-phonemes. It vali-
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Figure 2: Self-attention (top) of encoder-encoder that both x-
axis and y-axis represent input frames. Vanilla attention (bot-
tom) of encoder-decoder that the x-axis represents input frames
and y-axis corresponds to output labels.

dates the conclusion proposed on CTC based model [13]. Fi-
nally, it is obvious that the big model always performs better
than the base model no matter on the CI-phoneme based model
or syllable based model. Therefore, our further experiments are
conducted on the big model.

We further generate more training data by linearly scaling
the audio lengths by factors of 0.9 and 1.1 (speed perturb.)
[9]. It can be observed that syllable based model with speed
perturb becomes better and achieves the best CER of 28.77%
compared to without it. However, CI-phoneme based model
with speed perturb becomes very slightly worse than without
it. The interpretation of this phenomenon is that syllables have
a longer duration and more invariance than CI-phonemes, so s-
mall speed perturb would not affect the pronuciation of syllables
too much, instead of providing more useful and various training
data. However, small speed perturb might have more impact on
the pronuciation of CI-phonemes due to the short duration.

Table 2: Comparison of CI-phoneme and syllable based model
with the Transformer on HKUST datasets in CER (%).

sub-word unit model CER

CI-phonemes
D512-H8 32.94

D1024-H16 30.65
D1024-H16 (speed perturb) 30.72

Syllables
D512-H8 31.80

D1024-H16 29.87
D1024-H16 (speed perturb) 28.77

4.4. Comparison with previous works

In Table 3, we compare our experimental results to other mod-
el architectures from the literature on HKUST datasets. First,
we can find that the result of CI-phoneme based model with the
Transformer is comparable to the best result by the deep mul-
tidimensional residual learning with 9 LSTM layers in hybrid
system [24], and the syllable based model with the Transformer
provides over a 6% relative improvement in CER compared to
it. Moreover, the CER 28.77% of syllable based model with

the Transformer is comparable to the CER 28.9% by the joint
CTC-attention based encoder-decoder network [9] when no ex-
ternal language model is used, but slightly worse than the CER
28.0% by the joint CTC-attention based encoder-decoder net-
work with separate RNN-LM, which is the state-of-the-art on
HKUST datasets to the best of our knowledge.

Table 3: CER (%) on HKUST datasets compared to previous
works.

model CER
LSTMP-9×800P512-F444 [24] 30.79

CTC-attention+joint dec. (speed perturb., one-pass)
+VGG net

+RNN-LM (separate) [9]
28.9
28.0

CI-phonemes-D1024-H16 30.65
Syllables-D1024-H16 (speed perturb) 28.77

4.5. Comparison of different frame rates

Finally, table 4 compares different frame rates on CI-phoneme
and syllable based model with the Transformer. It indicates that
the performance of CI-phoneme and syllable based model with
the Transformer decreases as the frame rate increases. The de-
creasing rate is relatively slow from 30ms to 50ms, but deteri-
orates rapidly from 50ms to 70ms. Thus, it shows that frame
rate between 30ms and 50ms performs relatively well on CI-
phoneme and syllable based model with the Transformer.

Table 4: Comparison of different frame rates on HKUST
datasets in CER (%).

model frame rate CER

CI-phonemes-D1024-H16
(speed perturb)

30ms
50ms
70ms

30.72
31.68
33.96

Syllables-D1024-H16
(speed perturb)

30ms
50ms
70ms

28.77
29.36
32.22

5. Conclusions
In this paper we applied the Transformer, a new sequence trans-
duction model based entirely on self-attention without using
RNNs or convolutions, to Mandarin Chinese ASR tasks and
verified its effectiveness on HKUST datasets. Furthermore, we
compared syllables and CI-phonemes as the modeling unit in
sequence-to-sequence attention-based models with the Trans-
former in Mandarin Chinese. Our experimental results demon-
strated that syllable based model with the Transformer performs
better than CI-phoneme based counterpart on HKUST datasets.
What is more, a greedy cascading decoder with the Transformer
is proposed to maximize Pr(W |s)Pr(s|X) and then posterior
probability Pr(W |X) can be maximized. Experimental results
on CI-phoneme and syllable based model verified the effective-
ness of the greedy cascading decoder.
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