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Abstract
Double joint Bayesian is a recently introduced analysis method
that models and explores multiple information explicitly
from the samples to improve the verification performance.
It was recently applied to voice pass phrase verification,
result in better results on text dependent speaker verification
task. However little is known about its effectiveness in other
challenging situations such as speaker verification for short,
text-constrained test utterances, e.g. random digit strings.
Contrary to conventional joint Bayesian method that cannot
make full use of multi-view information, double joint Bayesian
can incorporate both intra-speaker/digit and inter-speaker/digit
variation, and calculated the likelihood to describe whether
the features having all labels consistent or not. We show that
double joint Bayesian outperforms conventional method on
modeling DNN local (digit-dependent) i-vectors for speaker
verification with random prompted digit strings. Since the
strength of both double joint Bayesian and conventional
DNN local i-vector appear complementary, the combination
significantly outperforms either of its components.
Index Terms: speaker verification, joint Bayesian analysis,
DNN i-vector

1. Introduction
As opposed to text-independent speaker verification, where the
speech content is unconstrained, text-dependent speaker
verification systems are more favorable for security
applications since they showed higher accuracy on short-
duration sessions [1, 2, 3]. Text dependent speaker verification
has wide applications in many areas, including smart human-
machine interface, security, forensic, telephone banking, and
so on.

Typical text-dependent speaker verification uses fixed
phrase for each user and hence, enrollment and test phrases are
matched. For this scenario it is possible that utterance from a
user can be recorded beforehand by an imposter and then play
it back. This spoofing or attack can be avoided to a certain
extent by sharing the same phonetic content but with different
context between training and test utterances, for example
the user is prompted to utter a digit strings randomly chosen
by the system. In this anti-spoofing scenario, the speaker is
usually prompted to utter all of 10 digits several times during
enrollment and test utterances contain a subset of the digits.
This work is tested on part III of the RSR2015 database [2]
which is designed to evaluate the ability of a system to deal
with this kind of scenario.

Previous methods regarding speaker verification with
random prompted digit string can be grouped into two
categories. The first category is based on the traditional
state-of-the-art Gaussian mixture model represented universal
background model (GMM-UBM) and joint factor analysis

(JFA) approach: Larcher et al. [2] use a Hidden Markov Model
(HMM) system termed HiLAM to model each speaker and each
state corresponding one of the 10 digits; Stafylakis et al. [4]
propose to use JFA to extract the global utterance vector and
local digit vector, which are fed into a joint density backend.

In the second category, deep models are ported to speaker
verification: deep neural network (DNN) is used to estimate the
frame posterior probabilities [5]; DNN as a feature extractor for
the utterance level representation [6]; Matejka et al. [7] have
shown that using bottleneck DNN features (BN) concatenated
to other acoustic features outperformed the DNN method for
text-dependent speaker verification; end-to-end deep learning
jointly optimizes the speaker representations and models [3];
multi-task deep learning jointly learns both speaker identity and
text information [8].

This paper is based on the work of Lei et al. [5], in which
a DNN is trained for phone recognition instead of a GMM-
UBM to produce frame posteriors for the computation of i-
vectors [9] and the work of [10, 11], in which the state-of-the-
art joint Bayesian and probability linear discriminant analysis
(PLDA) [12, 13] approach is extended to model the two voice
pass phrases jointly with an appropriate prior that considers
intra-speaker/phrase and inter-speaker/phrase variation over the
speaker pairs and phrase pairs at the same time.

Since the digit vocabulary of RSR2015 part III is fixed
small and limited, and further more that different speakers have
different pronunciations of the same digits, thus in this work
we propose to extract local digit-dependent DNN i-vectors for
speaker verification. Such local DNN i-vectors potentially have
different kinds of labels including a speaker latent variable and a
digit latent variable. This means the two latent variables related
to speaker and local digit pronunciations have equal importance,
and both variables are tied across all samples sharing a certain
label. Double Joint Bayesian (DoJoBa) [10] is employed to do
the verification of such DNN local i-vectors. The relationship
between DoJoBa and standard joint Bayesian is analogous to
that between joint factor analysis and factor analysis.

Our contribution is two-fold. Firstly we propose to use
DNN i-vector framework [5] to extract digit dependent DNN
i-vectors, which outperforms the utterance level features.
Secondly we propose to use DoJoBa to explicitly and
jointly model the multi-view information from digit samples,
such as certain individual saying certain digit, which leads
to a significant improvement for the speaker verification
performance in RSR2015 part III.

The remainder of this paper is organized as follows: Section
2 describes the DNN local i-vector/DoJoBa approach; The
detail experimental results and comparisons are presented in
Section 3 and the whole work is summarized in Section 4.

Interspeech 2018
2-6 September 2018, Hyderabad

67 10.21437/Interspeech.2018-1103

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1103.html


2. Model description
In this section we first review the DNN local i-vector
representation of utterance, and then present DoJoBa for
the modeling and likelihood ratio scoring of the DNN local
i-vectors.

2.1. DNN local i-vector

Classical i-vector approach [9] assumes that the t-th frame
feature from the i-th utterance is generated by the following
process

xt,i ∼
∑

k

πt,i,kN (µk + Tkwi, Σk) (1)

where N (µ, Σ) represents a Gaussian with mean µ and
covariance Σ, Tk and the latent vector wi are the total
variability subspace and i-vector respectively, πt,i,k is the
posterior of xt,i be generated by the k-th component. In order
to train the Tk and to extract the i-vector wi the following
necessary and sufficient zero-order, first-order and second-order
statistics

Nk,i =
∑

t

γk,t,ixt,i

Fk,i =
∑

t

γk,t,ixt,i

Sk,i =
∑

t

γk,t,ixt,ix
T
t,i (2)

needed to be computed respectively, where γk,t,i is the posterior
of xt,i with respect to the k-th Gaussian.

In [5], Lei et al. proposed to use the DNN to replace
the GMM to compute the posterior γk,t,i of the frames with
respect to each of the classes in the model. While in the
case of the GMM in traditional i-vector extractor, the classes
are the individual Gaussian from a mixture model, in the case
of the DNN the classes are senones. Given an utterance, the
statistics in (2) now can be updated by using the new posterior
probabilities γk,t,i of the senone classes. Then these sufficient
statistics are used to train the total variability matrix Tk and the
i-vector wi, which is called the DNN i-vector.

In the task of speaker verification with random prompted
digit strings since different speakers have own characterizations
in pronouncing each same digit. This digit-dependent
characterization will definitely help in this task. In order to
extract DNN i-vectors for each digits (will be called DNN local
i-vector in this work), we trained a DNN-HMM automatic
speech recognition (ASR) system based on the Librispeech
corpus [14] for two purposes: one is to do segmentation of the
utterances in to digits (more specifically to do the alignment
between the utterance and the prompt digit string); and the
other is to train a DNN used in the extraction of the DNN local
i-vector.

2.2. Double Joint Bayesian

We assume that the training data is obtained from I speakers
saying J digits each with Hij sessions. We denote the DNN
local i-vector of the k’th session of the i’th speaker saying j’th
digit by xijk (please do not confuse with the notation x in 1,
here xijk is indeed the w in 1). We model the digit dependent
feature generation by the process [10]:

xijk = µ + ui + vj + ϵijk. (3)

The model comprises two parts: 1, the signal component
µ + ui + vj which depends only on the speaker and digit,
rather than on the particular DNN local i-vector (i.e. there is
no dependence on k); 2, the noise component ϵijk which is
different for every DNN local i-vector of the speaker/digit and
represents within-speaker/digit noise. The term µ represents the
overall mean of the training vectors. Remaining unexplained
data variation is explained by the residual noise term ϵijk

which is defined to be Gaussian with diagonal covariance Σϵ.
The latent variables ui and vj are defined to be Gaussian
with diagonal covariance Σu and Σv respectively, and are
particularly important in real application, as these represents the
identity of the speaker i and the digit j respectively.

Formally the model can be described in terms of conditional
probabilities

p(xijk|ui, vj , θ) = N (xijk|µ + ui + vj , Σϵ),

p(ui) = N (ui|0, Σu),

p(vj) = N (vj |0, Σv).

where N (x|µ, Σ) represents a Gaussian in x with mean µ and
covariance Σ. Here it’s worth to notice that the mathematical
relationship between DoJoBa and joint Bayesian [15] is
analogous (not exactly) to that between joint PLDA [11] and
PLDA [16]. Compared to joint PLDA, DoJoBa allows the data
to determine the appropriate dimensionality of the low-rank
speaker and text subspaces for maximal discrimination, as
opposed to requiring heuristic manual selections.

Let X = {xijk ∈ RD : i = 1, ..., I; j = 1, ..., J ; k =
1, ..., Hij}, xij = {xijk : k = 1, ..., Hij}, and xi =
{xijk : j = 1, ..., J ; k = 1, ..., Hij}. In order to maximize
the likelihood of data set X with respect to parameters θ =
{µ, Σu, Σv, Σϵ}, the classical EM algorithm [17] is employed.

2.2.1. EM formulation

The auxiliary function for EM is

Q(θ|θt) = EU,V |X,θt [log p(X, U, V |θ)]

=EU,V |X,θt





I∑

i=1

J∑

j=1

Hij∑

k=1

log[p(xijk|ui, vj , θ)p(ui, vj)]





By maximizing the auxiliary function, we obtain the
following EM formulations.

E steps:we need to calculate the expectations
EU|X,θt [ui], EV |X,θt [vj ], EU|X,θt [uiu

T
i ], EV |X,θt [vjv

T
j ],

and EU,V |X,θt [uiv
T
j ]. Indeed we have

EU|X,θt [ui] = (4)
(

Σ−1
u + Σ−1

ϵ

J∑

j=1

Hij

)−1

Σ−1
ϵ

J∑

j=1

Hij∑

k=1

(xijk − µ − vj).

and

EU|X,θt [uiu
T
i ] = (5)

(
Σ−1

u + Σ−1
ϵ

J∑

j=1

Hij

)−1

+ EU|X,θt [ui]EU|X,θt [ui]
T .

It is almost the similar equations for EV |X,θt [vj ] and
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EV |X,θt [vjv
T
j ]. For EU,V |X,θt [uiv

T
j ], we have

EU,V |X,θt

{[
uiu

T
i uiv

T
j

vju
T
i vjv

T
j

]}
= (6)

(
diag[Σ−1

u , Σ−1
v ] + HijB

T Σ−1
ϵ B

)−1

+EU,V |X,θt

{[
ui

vj

]}
EU,V |X,θt

{[
ui

vj

]}T

where B =
[
I I

]
and

EU,V |X,θt

{[
ui

vj

]}
=
(

diag[Σ−1
u , Σ−1

v ] + HijB
T Σ−1

ϵ B
)−1

BT Σ−1
ϵ

Hij∑

k=1

(xijk − µ).

M steps: we update the values of the parameters θ =
{µ, Σu, Σv, Σϵ} and have

Σu =
1

∑I
i=1

∑J
j=1

∑Hij

k=1 1

I∑

i=1

J∑

j=1

Hij∑

k=1

EU|X,θt [uiu
T
i ],

Σv =
1

∑I
i=1

∑J
j=1

∑Hij

k=1 1

I∑

i=1

J∑

j=1

Hij∑

k=1

EV |X,θt [vjv
T
j ],

Σϵ =
1

∑I
i=1

∑J
j=1

∑Hij

k=1 1

I∑

i=1

J∑

j=1

Hij∑

k=1

{(xij − µ)(xijk − µ)T

−2(xijk − µ)[EU|X,θt [ui]
T + EV |X,θt [vi]

T ]

+EU|X,θt [uiu
T
i ] + 2EU,V |X,θt [uiv

T
j ] + EV |X,θt [vjv

T
j ]},

and

µ =

∑I
i=1

∑J
j=1

∑Hij

k=1 xijk

∑I
i=1

∑J
j=1

∑Hij

k=1 1
.

The expectation terms EU|X,θt [ui], EV |X,θt [vj ],
EU|X,θt [uiu

T
i ], EV |X,θt [vjv

T
j ], and EU,V |X,θt [uiv

T
j ] can

be extracted from Equations (4), (5) and (6).

2.2.2. Likelihood Ratio Scores

We treat the verification as a kind of hypothesis testing problem
with the null hypothesis H0 where two DNN local i-vectors
have the same speaker and digit variables ui and vj and the
alternative hypothesis H1 where they do not (there are three
cases: different underlying ui variable with same vj variable
in model M1, same ui variable with different vj variables in
model M2, or different underlying ui variables with different
vj variables in model M3). Given a test DNN local i-vector
xt and an enrolled DNN local i-vector xs, and let the priori
probability of the models M1, M2, M3 as p1 = P (M1|H1),
p2 = P (M2|H1), p3 = P (M3|H1), then the likelihood ratio
score is

l(xt, xs) =
P (xt, xs|H0)

P (xt, xs|H1)

=

N (

[
xt

xs

]
|
[
µ
µ

]
,

[
Σu + Σv + Σϵ Σu + Σv

Σu + Σv Σu + Σv + Σϵ

]
)

X
,

where

X = P (xt, xs|H1) = P (xt, xs|M1)P (M1|H1)

+P (xt, xs|M2)P (M2|H1) + P (xt, xs|M3)P (M3|H1)

=p1N (

[
xt

xs

]
|
[
µ
µ

]
,

[
Σu + Σv + Σϵ Σv

Σv Σu + Σv + Σϵ

]
)

+p2N (

[
xt

xs

]
|
[
µ
µ

]
,

[
Σu + Σv + Σϵ Σu

Σu Σu + Σv + Σϵ

]
)

+p3N (xt|µ, Σu + Σv + Σϵ)N (xs|µ, Σu + Σv + Σϵ).

Figure 1: Verification by comparing the likelihood of the data
under different hypotheses. Under the null hypothesis H1, the
feature xt and xs do not match. Under the hypothesis H0 they
match.

Notice that like standard joint Bayesian model [15], we do
not calculate a point estimate of hidden variable. Instead we
compute the probability that the two multi-label vectors had
the same hidden variables, regardless of what this actual latent
variable was. It is also to note that since on RSR2015 each
test utterance contains 5 digits, thus each trial contains 5 pairs
of DNN local i-vector during testing and results in 5 digits log
likelihood ratios, which will be simply averaged to obtain the
overall log likelihood ratio of the trial.

2.3. Score normalization

In order to transform log likelihood ratio scores from different
speakers into a similar range by using

s′ =
s − µI

σI

so that a common threshold can be used, where µI and σI

are the approximated mean and standard deviation of the
impostor score distribution respectively. We tried three score
normalization method: zero normalization (z-norm) uses
a batch of non-target utterances against the target model
to compute the mean µI and standard deviation σI ; test
normalization (t-norm) uses the unknown speaker’s feature
vectors against a set of impostor models to compute the
statistics; the zero and test normalized scores are finally
averaged to form the s-normalized scores [4].

3. Evaluation and discussion
In this section, we describe the experimental setup and results
for the proposed method on the public RSR2015 part III English
corpus [2].

3.1. Experimental setup

RSR2015 corpus [2] was released by I2R, and it is used
to evaluate the performance of different speaker verification
systems. In this work, we follow the setup of [4], the part
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III of RSR2015 is used for the testing of our method. Part
III of RSR2015 contains 300 speakers speaking in English
and chosen so that they form a representative sample of the
Singaporean population. All speech files are of 16kHz. The
gender distribution is balanced on the data set (157 male
and 143 female). Six mobile devices were used for the
recordings that took place under a typical office environment.
The speakers are divided into three disjoint groups refereed
to as background, development and evaluation, of 97, 97 and
106 speakers respectively. Each speaker model is enrolled with
3 10-digit utterances, recorded with the same handset, while
each speaker contributes 3 different speaker models. Each test
utterance contains a quasi-random string of 5 digits, one out of
52 unique strings. For both types of utterances, the digit string
is given and the verification algorithm may use it. In Table I,
the number of trials used for the experiments are given for each
set and gender1.

Table 1: Trial statistics for RSR2015 digits per set and gender.

Set Gender #target #nontarget
Dev Male 5154 251310
Dev Female 5052 231155
Eval Male 5943 332863
Eval Female 5283 253584

The input feature is 39-dimensional Mel-frequency cepstral
coefficients (MFCC, 13 static including the log energy + 13
∆ + 13 ∆∆) are extracted and normalized using utterance-
level mean and variance normalization. Then the frame-senon
pairs aligned by the GMM-HMM system will be used to train
a fully connected DNN. The DNN has 6 hidden layers (with
sigmoid activation function) of 2048 nodes each. The output
layer, which is the classification layer, is a softmax of dimension
9020 i.e., the output layer computes posteriors for 9020 triphone
tied states (senones).

3.2. Results and discussion

Three systems are evaluated and compared across above
conditions:

• DNN i-vector: the standard DNN i-vector system with
PLDA [18].

• DNN local i-vector: the DNN local i-vector system with
average log likelihood scores from the DoJoBa system
across the digits in the utterance.

• DoJoBa: the DNN local i-vector with the DoJoBa
system described in Section 2.

Table 2: Performance of different systems on the development
set of RSR2015 part III in terms of equal error rate (EER %).

EER(%),m/f DNN i-vector DNN local iv DoJoBa
w/o norm 3.26/3.48 2.75/2.92 2.19/2.33
z-norm 2.54/2.86 2.38/2.74 2.07/2.28

t-norm D 2.39/2.57 2.23/2.55 1.94/2.19
s-norm 2.36/2.66 2.32/2.43 1.88/2.05

1The numbers of trials are the same as the work [2] and a little
different from [4] of Dr. Stafylakis, since they rejected some utterances
due to duration and SNR constrains.

Table 3: Performance of different systems on the evaluation set
of RSR2015 part III in terms of equal error rate (EER %).

EER(%),m/f DNN i-vector DNN local iv DoJoBa
w/o norm 2.90/3.08 2.38/2.53 1.84/1.93
z-norm 2.23/2.55 2.05/2.37 1.69/1.91
t-norm 2.03/2.51 1.85/2.19 1.62/1.79
s-norm 1.99/2.35 1.93/2.12 1.48/1.66

Table 2 and Table 3 compare the performances of all
above-mentioned systems in terms of equal error rate (EER)
on the development and evaluation sets of RSR2015 part III
respectively. Obviously digit dependent DNN local i-vector is
superior to the standard DNN i-vector in this task, regardless of
the test database and the backend when compared with results
in [18].

Since DoJoBa system can explore both the identity and the
digit information from the DNN local i-vector, it constantly
performs better than standard DNN i-vector and joint Bayesian
systems. It can be seen from the results that the DNN local i-
vector with the DoJoBa system can obtain the state-of-the-art
performance.

4. Conclusion
In this paper we investigated the effectiveness of a double
joint Bayesian modeling for DNN local i-vector on the task of
speaker verification with random prompted digit strings. By
explicit modeling and exploring the difference in pronouncing
of each digit by different speakers the new framework
outperformed the DNN i-vector/PLDA approach.

5. References
[1] A. L. Higgins, L. G. Bahler, and J. E. Porter, “Speaker verification

using randomized phrase prompting,” Digital Signal Processing,
vol. 1, no. 2, pp. 89–106, 1991.

[2] A. Larcher, K. A. Lee, B. Ma, and H. Li, “Text-dependent
speaker verification: Classifiers, databases and rsr2015,” Speech
Communication, vol. 60, pp. 56–77, 2014.

[3] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-
end text-dependent speaker verification,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2016,
pp. 5115–5119.

[4] T. Stafylakis, M. J. Alam, and P. Kenny, “Text-dependent speaker
recognition with random digit strings,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 24, no. 7, pp.
1194–1203, 2016.

[5] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme
for speaker recognition using a phonetically-aware deep neural
network,” in Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on. IEEE, 2014, pp. 1695–
1699.

[6] E. Variani, X. Lei, E. Mcdermott, and I. L. Moreno, “Deep neural
networks for small footprint text-dependent speaker verification,”
in ICASSP 2014 - 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2014, pp. 4052–4056.

[7] H. Zeinali, H. Sameti, L. Burget, J. Cernocky, N. Maghsoodi,
and P. Matejka, “i-vector/hmm based text-dependent speaker
verification system for reddots challenge,” in INTERSPEECH,
2016.

[8] N. Chen, Y. Qian, and K. Yu, “Multi-task learning for text-
dependent speaker verificaion,” in INTERSPEECH, 2015.

[9] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and
P. Ouellet, “Front-end factor analysis for speaker verification,”

70



IEEE Transactions on Audio, Speech, and Language Processing,
vol. 19, no. 4, pp. 788–798, 2011.

[10] Z. Shi, M. Wang, L. Liu, H. Lin, and R. Liu, “A double
joint bayesian approach for j-vector based text-dependent speaker
verification.” arXiv preprint:1711.06434, 2017.

[11] Z. Shi, L. Liu, M. Wang, and R. Liu, “Multi-view (joint)
probability linear discrimination analysis for j-vector based text
dependent speaker verification,” in ASRU, 2017.

[12] S. Ioffe, “Probabilistic linear discriminant analysis,” Proc ECCV,
vol. 22, no. 4, pp. 531–542, 2006.

[13] S. J. D. Prince and J. H. Elder, “Probabilistic linear discriminant
analysis for inferences about identity,” in IEEE International
Conference on Computer Vision, 2007. Proceedings, 2007, pp.
1–8.

[14] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur,
“Librispeech: An asr corpus based on public domain audio
books,” in 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2015, pp. 5206–5210.

[15] D. Chen, X. Cao, D. Wipf, F. Wen, and J. Sun, “An efficient joint
formulation for bayesian face verification,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 39, no. 1, pp. 32–
46, 2017.

[16] Y. Jiang, K. A. Lee, Z. Tang, B. Ma, A. Larcher, and H. Li,
“Plda modeling in i-vector and supervector space for speaker
verification,” in ACM International Conference on Multimedia,
Singapore, November, 2012, pp. 882–891.

[17] A. P. Dempster, “Maximum likelihood estimation from
incomplete data via the em algorithm (with discussion,”
Journal of the Royal Statistical Society, vol. 39, no. 1, pp. 1–38,
1977.

[18] J. Zhong, W. Hu, F. K. Soong, and H. Meng, “Dnn i-vector
speaker verification with short, text-constrained test utterances.”
in Interspeech 2017, 2017, pp. 1507–1511.

71


