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Abstract
Deep neural network (DNN)-based speaker embeddings have
resulted in new, state-of-the-art text-independent speaker recog-
nition technology. However, very limited effort has been made
to understand DNN speaker embeddings. In this study, our
aim is analyzing the behavior of the speaker recognition sys-
tems based on speaker embeddings toward different front-end
features, including the standard Mel frequency cepstral coef-
ficients (MFCC), as well as power normalized cepstral coeffi-
cients (PNCC), and perceptual linear prediction (PLP). Using a
speaker recognition system based on DNN speaker embeddings
and probabilistic linear discriminant analysis (PLDA), we com-
pared different approaches to leveraging complementary infor-
mation using score-, embeddings-, and feature-level combina-
tion. We report our results for Speakers in the Wild (SITW)
and NIST SRE 2016 datasets. We found that first and second
embeddings layers are complementary in nature. By applying
score and embedding-level fusion we demonstrate relative im-
provements in equal error rate of 17% on NIST SRE 2016 and
10% on SITW over the baseline system.
Index Terms: Speaker recognition, deep neural networks,
speaker embeddings, score fusion, feature fusion, logistic re-
gression.

1. Introduction
Deep neural networks (DNN) have recently revolutionized
the area of speech technology. Their introduction in auto-
matic speech recognition (ASR), speaker and language recog-
nition [1, 2], speech activity detection (SAD), emotion recog-
nition, and speech enhancement systems has resulted in signifi-
cant performance gains over prior technologies.

In the area of speaker recognition, recent advances have
seen DNNs replacing the universal background model (UBM)
for frame alignment [3] and the use of DNNs for bottleneck
feature extraction [4]. More recently, DNNs have been directly
used to capture speaker characteristics by training to discrim-
inate between speakers, which results in a fixed-dimensional
speaker representation extracted from one of its hidden lay-
ers [5, 6, 7, 8]. This representation is referred to as a speaker
embedding. Initial research in this area was primarily concen-
trated on text-dependent speaker recognition, in which d-vectors
were used for text-dependent speaker recognition [6]. Of great
interest to the speaker recognition community was the general-
ization of this technology to the text-independent case [7, 8].
This context is the focus of this article, with speaker em-
beddings used to replace the i-vectors employed in traditional
speaker recognition systems [9] to offer a considerable improve-
ment to system robustness [8]. Besides the initial studies on
speaker embeddings, the topic of data augmentation to improve
system performance has also been a main focus [1, 10, 11], as
well as its application to speaker diarization [12].

In this paper, our goal is to gain a deeper understanding
of speaker embeddings with respect to leveraging complemen-
tary information to improve system performance. This topic
is highly relevant to real-world users of speaker embeddings,
in which computational needs must be balanced against perfor-
mance, and in which researchers are interested in the combina-
tion of multiple systems to maximize accuracy in speaker recog-
nition evaluations. Initial work in the area of embedding-system
combination was presented in [8], in which scores from two dif-
ferent embeddings layers from the same DNN were averaged.
We extend this research by comparing the robustness of differ-
ent front-end features for the speaker embedding extractor. We
also explore different output layers of the embedding extrac-
tor network and analyze the strengths and weaknesses of each.
This is followed by fusion of different information sources at
the score, embeddings, and feature-levels to understand where
complementarity can be best exploited. Our experiments are
conducted using NIST SRE 2016 [13] and the publicly avail-
able dataset Speakers in the Wild (SITW) [14].

The remainder of this paper is organized as follows: First,
the speaker recognition system used in this study is detailed.
This is followed by a brief overview of approaches to leverage
complementary information in speaker recognition systems in
Section 3. Next, Sections 4 and 5 describe the evaluation proto-
col and results, respectively. Section 6 presents the conclusion
of the study and provides directions for future research.

2. Speaker Recognition System
In this section, we detail our speaker recognition system that is
used throughout this study. The main components of our system
include speech activity detection (SAD), a DNN-based embed-
ding extractor, and a probabilistic linear discriminant analysis
(PLDA) classifier. While important for real system use, the as-
pect of system calibration is not covered in the scope of this
article and will be left for future research.

2.1. Speech Activity Detection

In our previous work [10], we investigated the impact of
speech activity detection (SAD) on the performance of speaker-
embeddings-based speaker recognition systems. It was shown
that a low SAD threshold during training tended to benefit the
embeddings extractor, while maintaining a strict threshold dur-
ing evaluation was necessary. Our SAD is DNN-based with
two hidden layers containing 500 and 100 nodes, respectively.
The SAD DNN is trained using 20-dimensional Mel-frequency
cepstral coefficients (MFCC) features, stacked with 31 frames.
Before training the SAD DNN, the features were mean and vari-
ance normalized over a 201-frame window. The threshold for
selecting the speech versus non-speech frames was 0.5 for eval-
uation and -1.5 for DNN training.
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2.2. Speaker Embedding Extractor

The architecture of our speaker embeddings extractor DNN fol-
lows the Kaldi recipe [15]. This feed-forward DNN is trained to
discriminate between speakers. Through the use of a statistics
pooling layer, the DNN maps a variable length utterance to a
fixed-dimensional embedding.

The embeddings network has five frame-level hidden lay-
ers with rectified linear unit (ReLU) activation and batch nor-
malization. The first three layers incrementally add time con-
text with stacking of [-2, -1, 0, 1, 2], [-2, 0, 2], and [-3, 0, 3]
instances of the input feature frame. Means and standard devia-
tions of the frame-per-audio segments are stacked using a statis-
tic pooling layer. The final two hidden layers of 512 nodes op-
erate at the segment-level prior to the log-soft-max output layer.
A ReLU activation function and batch normalization prior to
a layer’s output is applied to all layers except the output layer.
Speaker embeddings can be extracted either from first or second
segment-level hidden layer, each being 512 nodes.

2.3. Training Data

Training data plays an important role in the design of a ro-
bust speaker embeddings extractor [1, 10]. For training the
embeddings extractor, we follow the recipe in [10] for the
raw+CNlowRM system. Specifically, we start with the non-
degraded subset of the PRISM training lists [16], which con-
tains 52,456 audio files. We then augment this data with four
copies of degraded data using a random selection of audio com-
pression; a random selection of noises at a 5 dB signal-to-noise
ratio (SNR); a random selection of instrumental music at a 5 dB
SNR; and a random selection of reverberated signals with low
reverberation. The raw training data along with the augmented
data copies are used to train the DNN for embedding extraction.
This results in a total of 262,280 segments from 3,296 speakers.
For interested readers, additional details on these degradations
and how they were applied can be found in [10].

2.4. Probabilistic Linear Discriminant Analysis (PLDA)
Classifier

A PLDA model [17] learns the within-class and across-class
variabilities of a large, labeled training set using expectation
maximization (EM). We use gender-independent PLDA for all
our experiments described herein. Before training the PLDA
classifier, the dimensions of the embeddings are reduced to 200
using linear discriminant analysis (LDA), followed by length
normalization and mean centering [18] to Gaussianize the dis-
tribution of the speaker embeddings. Finally, these normalized
speaker embeddings are used by the PLDA classifier to com-
pute a similarity score between speaker embeddings. The full
PRISM training lists (including original degradations) [16] with
additional transcoded data is used for training the PLDA model.

3. Leveraging Complementary Information
in Speaker Recognition

In speaker recognition systems, complementary information is
often used to improve the robustness of the system and its abil-
ity to generalize to unseen data. In the NIST speaker recogni-
tion evaluations (SRE), teams often develop multiple systems,
which are complementary in nature and are used in combination
to form a robust system [19, 20].

These complementary information sources can be com-
bined in numerous ways. Typically, this fusion is performed

at the score-level, which enables each system to be developed
independently, at the cost of increased computational needs for
the full system. In this work, we investigate different points
of fusion within the embeddings architecture to determine how
to maximize performance while minimizing the system’s com-
putational requirements. To this end, we fuse information from
multiple sources by using (i) score-level fusion, (ii) embedding-
level fusion, and (iii) feature-level fusion.

3.1. Score-Level Fusion

Score-level fusion is the most widely used technique to lever-
age complementary information from multiple sub-systems in
speaker recognition. In this work, we use two different types of
score-level fusion approaches.

3.1.1. Score Averaging

This approach is usually applied where there is an absence of
held out data. This type of fusion refers to the equally weighted
sum of PLDA scores of multiple sub-systems. This approach
was used in [8] for fusion of PLDA scores from i-vector and
speaker embedding sub-systems.

3.1.2. Logistic Regression

Logistic regression based score-level fusion typically refers to
the application of logistic regression to learn a set of fusion and
calibration parameters that optimize the combination of infor-
mation sources on a held-out dataset [21, 19]. The advantage
of logistic regression training is two-fold: First, it improves
the discriminative ability of the system. Secondly, it calibrates
the output score, so that it functions as a well-calibrated log-
likelihood ratio. Additional mathematical details on logistic re-
gression fusion for speaker recognition can be found in [19].

3.2. Embeddings-Level Fusion

Embeddings-level fusion is inspired by our i-vector fusion
paradigm [20]. This process involves applying linear discrimi-
nant analysis (LDA) to each individual source of information
(embeddings) to reduce the embeddings to 200 dimensions,
concatenating the reduced embeddings, and then applying a fi-
nal LDA transform to reduce the concatenated embeddings to
200 dimensions. The embeddings can either be from different
output layers of the same embedding-extractor network or from
different embeddings extractors.

3.3. Feature-Level Fusion

Different types of acoustic features represent speaker-specific
characteristics in a complementary manner [22]. Feature-level
fusion is the simple process of concatenating feature vectors
from multiple sources. This happens at the early stage as op-
posed to score-level fusion which is a late fusion. For instance,
concatenating two features of 20 dimensions will result in a 40-
dimensional fused feature. The fused feature is then fed as an
input to the speaker embedding extractor DNN.

4. Evaluation Protocol
We evaluate our speaker recognition system on two different
datasets: (i) NIST SRE 2016 and (ii) Speakers in the Wild
(SITW). These datasets contain a range of conditions such as
channel, language, codecs, noises, reverberation etc. usually
observed in the real-world. The performance of the system
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Table 1: Details of different evaluation conditions from NIST
SRE 2016 and SITW and number of target/impostor (tgt/imp)
trials used in this work.

Conditions # Spk # Tgt # Imp
sre16-tgl 101 17764 1003568
sre16-yue 100 19298 946098
sre16-all 201 37062 1949666

SITW 180 3654 716933

across these datasets is measured in terms of equal error rate
(EER).

NIST SRE 2016: NIST Speaker Recognition Evaluation
(SRE) 2016 dataset includes variabilities due to domain/channel
and language mismatches. It also has variability in test seg-
ment duration which is uniformly distributed between 10s and
60s. The non-English conversational telephone speech (CTS) is
recorded over a wide variety of handset types. We report our
results on Tagalog (sre16-tgl) and Cantonese (sre16-yue), also
referred to as the major languages in the evaluation as well as
on overall set.

SITW: The Speakers in the Wild (SITW) dataset contains
speech samples in English from open-source media [23]. SITW
contains naturally occurring noises; reverberation; codec; and
channel variability. The enroll and test utterances for SITW
vary in duration from 6–240 seconds. We report our results on
evaluation set of SITW data.

The details of different evaluation conditions used in the
experiments from NIST SRE 2016 and SITW are summarized
in Table 1. For training of the calibration parameters in score-
level fusion using logistic regression, the development set from
NIST SRE 2016 and SITW were used.

5. Results and Analysis
This section investigates how to best exploit the complementary
information between embedding systems trained using differ-
ent acoustic features. We first benchmark three different front-
end features. We then explore single system complementarity
and multiple feature combination using approaches proposed in
Section 3.

5.1. Front-End Features

Prior to investigating how to maximize the complementary
information from different acoustic features in the speaker em-
beddings framework, we provide a benchmark of the features
considered in this study. From these results, we can quantify
the relative contribution of additional information in the system.

Table 2: Equal Error Rate (EER) in % of individual acoustic
features used in this study. Both first and second embeddings
layers were evaluated.

1st Embedding 2nd Embedding
Condition MFCC PNCC PLP MFCC PNCC PLP

sre16-tgl 23.05 21.03 22.98 21.89 21.05 24.18
sre16-yue 10.11 8.25 11.28 10.01 9.33 12.98
sre16-all 17.88 16.16 18.16 17.21 16.2 20.2
SITW 7.22 8.46 8.56 7.09 9.14 9.09

We selected three widely used front-end features for our
analysis: (i) MFCC, (ii) power normalized cepstral coefficients
(PNCC) [24], and (iii) perceptual linear prediction (PLP) [25].
We use 20-dimensional MFCC and PNCC features with the
frame rate of 25 ms and the step size of 10 ms. PLP features are
13-dimensional vectors with the same frame rate and step size
as MFCC and PNCC. Our baseline system is using MFCC fea-
tures with embeddings extracted from first output layer, which
is similar to [1].

Both embedding layers were benchmarked independently
for each of these features, with results summarized in Table 2.
Several trends can be observed from these results. First, PNCC
provides better performance across SRE 16 conditions using ei-
ther first or second embedding layer over MFCC and PLP. Sec-
ond, MFCC features consistently provide better performance
using the second embedding layer across all evaluation condi-
tions. From these results, it is clear that no single feature is
best suited to either dataset. It is in such scenarios that system
fusion aims to harness the most useful information from indi-
vidual features and provide and better system overall.

Quantifying the difference between features, PNCC fea-
tures give a relative improvement of 9.6% for SRE 16, while
MFCC with second layer embedding resulted in an improve-
ment of more than 6% for SITW set. PLP, on the other hand,
offered the worst performance across both datasets

5.2. Single System Complementarity

Due to the benefits of each feature or embedding layer choice
being dataset-dependent, we aim to analyze the methods
of leveraging complementary information in the embeddings
framework as described in Section 3.

Table 3: Equal Error Rate (EER) in % when combining first and
second embeddings layers through score-level or embedding-
level fusion.

Condition MFCC PNCC PLP

Score Averaging
sre16-tgl 21.83 20.38 22.97
sre16-yue 9.08 7.85 11.43
sre16-all 16.83 15.44 18.78
SITW 6.54 8.16 8.13

Logistic Regression
sre16-tgl 21.86 20.40 22.73
sre16-yue 9.08 7.88 11.07
sre16-all 16.83 15.45 18.19
SITW 6.49 8.16 8.10

Embedding-Level combination
sre16-tgl 21.69 20.01 22.09
sre16-yue 9.21 7.85 11.43
sre16-all 16.50 14.83 17.91
SITW 6.63 8.40 8.70

We first look at how to best exploit complementary infor-
mation within a single embeddings network. This is done using
either score-level fusion or embedding-level fusion of the first
and second embeddings layers from a given embeddings net-
work. For score-level fusion we explore both simple averaging
as in [8] and logistic regression fusion. Results are reported in
Table 3.

Fusion of first and second layer with all three approaches
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resulted in the improved performance for all three features over
their first layer embedding alone. For SRE 16, embedding-level
combination was better than at score-level, whereas for SITW,
logistic regression fusion resulted in the best performance. For
the sre16-all condition, embedding-level fusion of PNCC fea-
tures resulted in a 17% relative improvement over MFCC fea-
tures. For SITW, logistic regression based score fusion im-
proved the performance by 10%. This demonstrates that the
first and second output layer embedding are complementary in
nature.

For score-level fusion, we observe that both score averaging
and logistic regression fusion yield similar results. This shows
that for the MFCC and PNCC features, the embeddings layers
offer similar levels of useful information in the fusion, while in
the case of PLP in which logistic regression was consistently
better, the fusion process was able to determine more appropri-
ate weights for each embedding layer than a simple average.

5.3. Multiple Feature Combination

In this section, we expand the combination of systems to in-
clude more than one acoustic feature; a process in which more
complementary information is expected due to the unique pro-
cessing of the audio from each feature. To observe the com-
plementarity of acoustic features, we restrict the analysis to the
first embeddings layer. Expanding on the combination methods
of the previous section, we also analyze feature-level fusion that
simply concatenates features at the frame level prior to input to
the embeddings DNN.

Table 4: EER(%) using multiple acoustic features in up to three
methods of combination in the embeddings framework.

Condition MFCC+PNCC MFCC+PLP PNCC+PLP

Score Averaging
sre16-tgl 21.43 22.48 21.27
sre16-yue 8.39 9.92 8.79
sre16-all 16.43 17.51 16.51
SITW 7.11 6.96 7.77

Logistic Regression
sre16-tgl 21.09 22.44 20.99
sre16-yue 8.19 10.04 8.28
sre16-all 16.15 17.52 16.12
SITW 6.90 6.79 8.46

Embedding-level combination
sre16-tgl 21.10 22.72 20.74
sre16-yue 8.13 9.73 8.67
sre16-all 15.86 17.77 15.98
SITW 7.14 7.06 8.10

Feature-level combination
sre16-tgl 22.90 24.04 21.32
sre16-yue 10.21 10.37 9.48
sre16-all 17.93 18.67 16.37
SITW 9.66 7.53 11.36

Table 4 provides results for numerous combination options
across embeddings systems. Combination of multiple acoustic
feature subsystems resulted in improved performance at score
and embedding-level fusion for MFCC and PNCC. However
multiple subsystem fusion did not outperform the single sys-
tem complementarity from both embeddings layers of a single
DNN shown in the previous section.

One of the things to note in Table 4 is that feature-level
combination did not yield significant gains and in some cases,
it resulted in a performance loss over the baseline. This was
probably due to that fact that features are highly correlated and
may require some type of dimensionality reduction approaches
such as principal component analysis (PCA) or LDA to reduce
the dimensions before feeding the features to the embedding
DNN.

6. Conclusions and Future Work
In this work, we investigated front-end features and fusion
approaches for a text-independent speaker recognition system
based on deep neural network speaker embeddings. We exper-
imented with three different features and explored fusion at the
score-, embeddings-, and feature-level. We found that MFCC
and PNCC features are more robust compared to PLP features.
The first and second layer embeddings provide information that
is complementary. The fact that the second embeddings layer
can be extracted from the first with very limited overhead pro-
vided motivation for its use. In the context of multiple acoustic
features, score- and embedding-level fusion helps increase the
overall robustness of speaker recognition systems while feature
fusion was found to degrade the performance of the system in
some cases. In the future, we plan to explore the feature-level
contextualization alongside the internal contextualization of the
DNN and leverage side or meta information in the training of
the embeddings DNN to better exploit complementary informa-
tion in a condition-dependent manner. We also plan to explore
various dimensionality reduction approaches in order to extract
information from feature-level fusion.
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