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Abstract
An ASR system usually does not predict any punctuation or
capitalization. Lack of punctuation causes problems in re-
sult presentation and confuses both the human reader and
off-the-shelf natural language processing algorithms. To
overcome these limitations, we train two variants of Deep
Neural Network (DNN) sequence labelling models - a Bidi-
rectional Long Short-Term Memory (BLSTM) and a Con-
volutional Neural Network (CNN), to predict the punctua-
tion. The models are trained on the Fisher corpus which
includes punctuation annotation. In our experiments, we
combine time-aligned and punctuated Fisher corpus tran-
scripts using a sequence alignment algorithm. The neural
networks are trained on Common Web Crawl GloVe em-
bedding of the words in Fisher transcripts aligned with con-
versation side indicators and word time infomation. The
CNNs yield a better precision and BLSTMs tend to have
better recall. While BLSTMs make fewer mistakes overall,
the punctuation predicted by the CNN is more accurate -
especially in the case of question marks. Our results con-
stitute significant evidence that the distribution of words in
time, as well as pre-trained embeddings, can be useful in the
punctuation prediction task.
Index Terms: punctuation prediction, speech recognition

1. Introduction
Automatic Speech Recognition (ASR) systems are becoming
widely adopted in various applications, such as voice com-
mands, voice assistants, dictation tools or conversation tran-
scribers. In many ASRs, a serious limitation is the lack of
any punctuation or capitalization (with exception of some recent
end-to-end models). This can be problematic both in the case
of visual presentation of the outputs, where the non-punctuated
transcripts are confusing and difficult to read, and when these
transcripts are used as inputs for downstream tasks such as those
in the domain of Natural Language Processing (NLP). Off-the-
shelf NLP systems are usually trained on punctuated text, thus
lack punctuation can cause a significant deterioration of their
performance.

We are especially interested in addressing this issue in the
domain of telephone conversational speech. Our application
transcribes telephone calls between customers and agents, and
performs their semantic annotations to find particular and spe-
cific events, as well as an intents and moods of the interlocutors.

Providing punctuation became crucial for us to provide a high
quality service.

Unlike many other machine learning tasks, punctuation pre-
diction does not abound reference datasets that would enable su-
pervised learning. In principle any punctuated text source such
as blogs, news articles or Wikipedia, could be used for training a
punctuation prediction model, but most of them are hardly rep-
resentative of the conversational language. On the other hand,
speech transcripts with proper punctuation are rather difficult to
find or time-consuming to annotate. In this work, we show that
the English Fisher corpus [1], which contains about 11000 dis-
tinct conversations, can be successfully used to provide data for
punctuation prediction.

To leverage the fact that we are working with conversa-
tional speech, we propose to use the recognition from both sides
of the conversation to predict punctuation, as well as relative
timing and duration of each word, which, to the best of our
knowledge, has not been used before for punctuation prediction
task. Two variants of Deep Neural Network (DNN) sequence
labelling models - a Bidirectional Long Short-Term Memory
(BLSTM) and a Convolutional Neural Network (CNN) were
trained to predict the punctuation outputs for each word in the
dialogue sequence. Pre-trained GloVe [2] word embeddings
were used with the intent of making the model more robust to
different conversation topics than those that can be found in En-
glish Fisher corpus [1]. Both models achieve results that are
on par with other work performed in this task for comparable
domains.

The related research is presented in section 2. Section 3
describes our approach to data preparation as well as model ar-
chitectures and the details of their training. We present and dis-
cuss the results in section 4. Finally, we conclude our work in
section 5.

2. Related work
Early attempts focused on finding sentence boundaries (”dot
prediction”), and for that purpose, several linguistic features
were used: an n-gram language model, turn markers and parts
of speech (POS) information [3]. Subsequent research em-
ployed a maximum entropy model, which predicted dots, com-
mas and question marks based on lexical features (words, n-
grams and previous predictions) and prosodic features, repre-
sented as pause tokens of a specific length [4]. It has been
shown that the presence of pauses in speech can serve as an

Interspeech 2018
2-6 September 2018, Hyderabad

2633 10.21437/Interspeech.2018-1096

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1096.html


indicator of punctuation marks, but there is a significant varia-
tion in how different speakers use pauses [5]. Conditional Ran-
dom Fields (CRF) based models were also proposed for this
task [6, 7].

Recently, an LSTM model with several variants has been
proposed for this task, which similarly uses words and pauses
tokens as inputs [8, 9]. The authors decided not to use additional
prosodic features such as F0 or phone durations due to their
subpar performance in [10]. We wish to emphasize that relative
word timing and duration have not been investigated by any of
these works, and in principle, their fidelity should be higher than
artificial, discretized pause tokens.

3. Methods
3.1. Data preparation

Unlike other telephone speech corpora the Fisher corpus [1] has
properly punctuated transcripts. While the most widely used
version of the Fisher transcripts (available in LDC catalogue
numbers LDC2004T19 and LDC2005T19) are the .txt files con-
taining time alignment, the majority of conversations also has a
second transcript version in a .txo file, which does not have time
alignment, but has rich punctuation and proper capitalization.
The availability of this data provides an opportunity to utilize
the information from both sides of the conversation to predict
punctuation.

We represent a dialogue W as an ordered set W = {wi} of
words w, where each w has several properties:

• ti is the textual representation of word wi;
• ci is a binary feature, representing which conversation

side uttered word wi;
• si is a real number, describing time offset (in seconds) at

which the word wi started;
• di is a real number, describing the duration (in seconds)

of the word wi;
• pi is the punctuation symbol, which appears after word
wi.

The set is ordered on the s property of each word, i.e. the start-
ing time. This formulation allows to elegantly represent inter-
jections, interruptions and simultaneous speech, which are often
encountered in dialogues. The p properties are only known at
the training time and are being predicted during inference. With
this representation in mind, we treat the punctuation prediction
problem as a sequence labelling task.

To fit the Fisher data into our model definition, we need
to combine information from time-annotated and punctuated
transcripts. The first step is computing the forced alignment
of the time-annotated transcripts to obtain word-level informa-
tion about starting times and durations (s and d properties). For
that purpose, we used the Kaldi ASR toolkit [11] with a LSTM-
TDNN acoustic model trained with lattice-free Maximum Mu-
tual Information (MMI) criterion [12]. In order to minimize
the differences between two transcript versions we edited the
Fisher data preparation script not to exclude single-word utter-
ances and the text in parentheses, .

The next step is extraction of punctuation properties p and
conversation side properties c from the punctuated transcripts.
We retain blanks (no punctuation), dots, commas and question
marks. Other punctuation classes were rejected (converted to
blanks) due to their low frequency (e.g. exclamation marks or
triple dots) or the fact that it is modeled by other properties of
the representation (double dash - that marks an interruptions).

Figure 1: An example of alignment between two word sequences
in Fisher: the time-annotated and the punctuation annotated.
The s stands for start time and d stands for duration, both in
seconds. The circles represent a blank symbol, i.e. no match for
a given word in the second sequence.

Finally, we combine the information obtained from both
sources. This task is not trivial, since both transcript ver-
sions may have slight differences. We observed that this prob-
lem could be viewed as global alignment between two sym-
bol sequences, which can be obtained by the application of the
Needleman-Wunsch algorithm [13]. The algorithm, originating
in bioinformatics for DNA sequence alignment, is based on dy-
namic programming and is available in open-source Biopython
library [14]. We compute the alignment between two transcript
versions separately for each channel in each recording and re-
move the words which appeared in only one of the transcripts.
Then, we concatenate the words from both channels into one
sequence and sort it by the starting time s, which yields our
dialogue representation.

Table 1: The total count of labels for each of the punctuation
classes available in our training data set.

Class Count Percentage

blank 1429905 79.1%
comma 208289 11.5%

dot 148624 8.2%
question mark 22182 1.2%

2634



Since this is a sequence labelling task, we’re predicting
punctuation class for each word. This results in a heavy class
imbalance, as shown in table 1. We attempted to mitigate
this issue by introducing sample weighting based on predicted
class frequency, however, it resulted in the model being skewed
towards high recall, but much lower precision for the under-
represented classes, manifesting as frequent false positives.

3.2. Punctuation model

3.2.1. Features

There are several input features which we explored for our ex-
periments. The features which we used in every experiment
are word embeddings and a conversation side indicator. The
word embeddings are 300-dimensional pre-trained GloVe [2]
embeddings1, trained on Common Web Crawl data. Those
weights are fixed during training. We selected the embeddings
for 50000 most frequent words. Then we expanded this repre-
sentation by added zeroes values to embed all out of vocabulary
words to save GPU memory. Increasing the vocabulary size
to 100000 words did not provide any significant performance
gains. Additionally, we trained our own GloVe embeddings on
conversational-like data (around 525M words) gathered by the
University of Washington2 to investigate if these embeddings
trained on conversational data would perform better, however,
in some experiments, they resulted in either the F1 score being
0.2-0.3% lower or a lack of model convergence. We suspect this
might be caused by a much smaller data quantity compared to
the official GloVe embeddings.

The conversation side feature is a one-dimensional binary
feature.

We used the word time information described by the inter-
val between the start of the current word and start of the previ-
ous word, and duration of the current word, as features to the
model. We provided the interval instead of absolute offset time
to obtain a more normal-like distribution for this feature. Both
of these features are speaker-adapted, i.e. they are standardized
with regard to other words uttered by the same speaker in the
same dialogue. This also means that the pauses are not mod-
elled explicitly as word tokens - they must be inferred by the
model based on the subsequent word timings.

In some experiments, we used part of speech (POS) tags
predicted by SpaCy 3, although we didn’t notice any significant
improvement. We hypothesize that either the POS tags did not
introduce any predictive information, or that the performance
of the tagger was poor in the absence of punctuation (and thus
sentence segmentation).

3.2.2. Architecture

We evaluated the performance of two types of models - one
based on Convolutional Neural Nets (CNN), and the other
based on Bidirectional Long Short-Term Memory (BLSTM)
networks. The input layer is a concatenation of the features
described in 3.2.1. Both models were implemented using
Keras [15] with Tensorflow [16] backend.

The BLSTM model consists of four BLSTM layers, with
each direction having 128 weights. This model has the advan-

1The glove.42B.300d.zip embeddings, which are available at
https://nlp.stanford.edu/projects/glove.

2The 525M fisher conv web-filt+periods.gz data set, which is avail-
able at https://ssli.ee.washington.edu/data.

3https://spacy.io/

tage of seeing a large context of words during training, and pos-
sibly the whole conversation during inference.

The CNN model uses several layers of 1D convolutions,
which can be interpreted as fully-connected layers processing
the input in small windows. We additionally use dilated convo-
lutions to broaden the context seen by each consecutive CNN
layer. Each layer is followed by a SELU activation [17], which
yielded a small improvement over batch normalization [18] with
ReLU [19]. The setup which worked best for us is six 1D
CNN layers, each with the filter size of 128 and padding which
doesn’t modify the word sequence length (i.e. same). The con-
text width is equal to 3 for first five layers and equal to 20 for
the last layer. The middle four layers have a dilation rate of 2.

The final layer in both CNN and BLSTM model is fully-
connected and followed by a softmax activation - this layer is
applied separately at each time step to retrieve punctuation pre-
diction for a given word.

To regularize the model we apply several measures:

• a dropout layer with probability 0.5 before the softmax
layer;

• 0.001 weight decay for the softmax layer weights and
also for the BLSTM recurrent layers;

• we add Gaussian noise with standard deviation 0.1 to the
time feature and embedding inputs, before the last soft-
max activation, and before SELU activations in the CNN
model;

• SELU activations in the CNN model, which constrain
the weights to a zero mean and unit variance distribution
(which was verified by inspecting in TensorBoard).

3.3. Training

To train the models, we use a standard, categorical cross-
entropy loss function and the Adam optimizer [20] with default
settings proposed by the authors. The number of epochs is de-
termined by early stopping, with two epochs patience. We di-
vide the Fisher conversations into training, validation and test
sets with proportions 8:1:1. To best utilize the GPU, we use a
batch size of 256 and each sample in the batch is created by
traversing the conversation in windows of 200 words.

4. Results
We present the results achieved by the CNN and BLSTM mod-
els with and without time features in table 2. Each model is
evaluated with precision, recall and F1 scores for each punctu-
ation class separately. We see that CNN models yield slightly
higher precision for the punctuation classes, and BLSTM tends
to have the better recall (and the inverse is true for the blank
symbol). Although the BLSTM model makes fewer mistakes
overall, the punctuation predicted by the CNN model is more
accurate - especially in the case of question marks. The word-
level time features yield minor improvement in both models,
which suggests that the prosodic information carried by the rel-
ative word timing and their duration is useful in the punctuation
prediction task.

For the BLSTM+T model we show the confusion matrix in
figure 2. This matrix is row-normalized to better illustrate per-
class mistakes, but the reader should note that due to the class
imbalance (shown in table 1), this confusion matrix is almost
symmetric regarding absolute numbers.

We observe several interesting types of mistakes. First of
all, the blanks and commas are most frequently confounded
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Table 2: The per-class precision, recall and F1-score (in %)
achieved by the CNN and BLSTM models with pre-trained
GloVe embeddings. All models used 300-dimensional word
embeddings and 1-dimensional boolean conversation side fea-
tures, and the +T models additionaly used two 1-dimensional
time features. The ε symbol denotes a blank prediction.

Model Class Precision Recall F1

CNN

ε 91.7 95.5 93.5
. 67.7 58.6 62.8
? 70.8 45.1 55.1
, 68.3 58.1 62.8

CNN+T

ε 92.3 95.2 93.8
. 68.6 63.3 65.9
? 72.9 46.7 57.0
, 68.7 60.3 64.2

BLSTM

ε 92.7 94.9 93.8
. 66.9 63.1 64.9
? 70.2 47.3 56.5
, 67.9 61.8 64.7

BLSTM+T

ε 93.5 94.7 94.1
. 67.9 66.7 67.3
? 64.7 54.6 59.2
, 68.2 64.1 66.1

types (around 55k false positives and 44k false negatives),
which in our opinion is the least harmful type of mistake, given
that the placement of commas in transcribed speech can often be
arbitrary. All of the punctuation classes labels are missed about
20% of the time (i.e. blank is predicted) relatively to their oc-
currence count. The question mark is the most difficult class to
predict and is often mistaken with the dot (about 20% of ques-
tion marks), relatively rarely inserted in place of any other class.
This can most likely be explained by the scarcity of labels for
this class.

Below is an example part of a Fisher dialogue showcasing
the predictions of the punctuation model. Note: words start with
a capital letter only after a dot appears.

L: Oh, and that’s west paterson. I don’t know
R: Oh,
L: if
R: okay.
L: that counts.
R: Okay. Okay. Yeah, west peterson is nice.
[laughter] So, i didn’t even understand the ah, the
topic of the day did you hear it?
L: I [noise] i heard first i heard censorship. And
then i heard, ah, today’s topic is something about
public schools. It was i think, ah, should public
schools
R: Do something about books
L: be allowed
R: kids
L: to censor
R: read?
L: certain books.

Besides the quantitative evaluation, we also performed a
qualitative investigation of the predictions of both models on

bla
nk . ? ,

Predicted label

blank

.

?

,

Tr
ue

 la
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l

0.95 0.02 0.00 0.03

0.22 0.67 0.02 0.09
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0.28 0.08 0.00 0.64

Confusion matrix
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Figure 2: Confusion matrix for the BLSTM+T model, normal-
ized with regard to true labels (i.e. rows).

the ASR transcripts of calls from a different domain than Fisher.
Since we do not have the golden labels for this data, this eval-
uation is highly subjective. We observed that the CNN model
tends to yield less confusing mistakes and outputs transcripts
with higher, subjective readability, which is supported by the
higher precision scores obtained by this model. We suspect that
this effect is amplified by the fact that the BLSTM model is
more vulnerable to ASR mistakes due to the larger context size
during inference.

5. Conclusions

We presented two kinds of punctuation predictions DNN mod-
els - BLSTM and CNN based - which operate on a conver-
sation, represented as a sequence of words, and utilize word
embeddings, conversation side and per-word timing informa-
tion as features. We used two versions of the Fisher corpus
transcripts - time-aligned and punctuated - along with sequence
alignment procedure to procure the training and evaluation data.
Our results constitute significant evidence that the distribution
of words in time, as well as pre-trained word embeddings, can
be useful in the punctuation prediction task in the domain of
conversational speech. We’ve shown that the CNN architec-
ture tends to achieve better precision scores, while the BLSTM
variant is characterized by overall better recall and F1 measure.
These models can be easily applied in a production environment
to provide punctuation annotations for speech recognition sys-
tem transcripts, where all of the model input features are avail-
able. For the future work, we’d like to investigate how much im-
provement can be gained by using prosodic features, as well as
more sophisticated neural network architectures, such as mod-
els with attention [21].
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