
Acoustic Modeling with Densely Connected Residual Network for
Multichannel Speech Recognition

Jian Tang1, Yan Song1, LiRong Dai1, Ian McLoughlin2

1National Engineering Laboratory for Speech and Language Information Processing University of
Science and Technology of China, Hefei, Anhui, P.R.China
2School of Computing, University of Kent, Medway, UK

enjtang@mail.ustc.edu.cn, songy@ustc.edu.cn, lrdai@ustc.edu.cn, ivm@kent.ac.uk

Abstract
Motivated by recent advances in computer vision research, this
paper proposes a novel acoustic model called Densely Con-
nected Residual Network (DenseRNet) for multichannel speech
recognition. This combines the strength of both DenseNet and
ResNet. It adopts the basic “building blocks” of ResNet with
different convolutional layers, receptive field sizes and growth
rates as basic components that are densely connected to form so-
called denseR blocks. By concatenating the feature maps of all
preceding layers as inputs, DenseRNet can not only strength-
en gradient back-propagation for the vanishing-gradient prob-
lem, but also exploit multi-resolution feature maps. Preliminary
experimental results on CHiME-3 have shown that DenseRNet
achieves a word error rate (WER) of 7.58% on beamforming-
enhanced speech with six channel real test data by cross en-
tropy criteria training while WER is 10.23% for the official
baseline. Besides, additional experimental results are also p-
resented to demonstrate that DenseRNet exhibits the robustness
to beamforming-enhanced speech as well as near and far-field
speech.
Index Terms: DenseNet, robust acoustic model, ResNet,
speech recognition, CHiME-3.

1. Introduction
With the advent of deep learning techniques, the performance
of automatic speech recognition (ASR) has been significantly
improved. However, it is still far from satisfactory in realistic
noisy and far-field scenarios. To improve robustness of ASR,
microphone arrays are commonly utilized, and multi-channel
speech recognition is receiving more and more attention.

Existing multichannel speech recognition system mainly
consist of a frontend to improve the robustness to severe sig-
nal impairments from noise or reverberation, and a backend for
acoustic modeling. Recently, the frontend has become a hot
research topic. Most frontend methods rely on a model-based
masking of time frequency (TF) bins to estimate signal statistics
for steering a corresponding beamformer [1, 2, 3, 4, 5, 6, 7, 8, 9].
Unlike the frontend, backend acoustic modeling has received
less attention. In the CHiME-3 challenge, a simple 6 layer DNN
network is employed as official baseline. However, in [8], a
significant performance improvement was achieved by using a
Wide Residual Network (WRN) model.

In this paper, we focus on the backend acoustic modeling,
and attempt to find a suitable network architecture for robust
ASR. In [10, 11, 12], the multi-resolution cepstral features are
demonstrated to improve recognition performance over single-
resolution one either under the clean or white noise situation.
In [13], a WRN model is proposed, which enjoys both the ad-

vantages of deeper networks with residual architecture to alle-
viate the vanishing-gradient problem, and wider network set-
tings to increase the ability to learn different kinds of fea-
tures. The multichannel speech recognition system with WRN-
based backend acoustic model has shown its superiority for ro-
bust ASR [8]. More recently, densely connected convolution-
al networks (DenseNet), which can be seen as an extension
of ResNet, achieve state-of-art performance on image recogni-
tion [14, 15, 16], Semantic Segmentation [17], and Handwritten
Mathematical Expression Recognition [18]. The architecture is
constructed from dense blocks and pooling operations, where
each dense block is an iterative concatenation of previous fea-
ture maps.

Motivated by recent advances in computer vision research,
we propose a Densely Connected Residual Network, termed
DenseRNet, for backend acoustic modeling in Multichannel
ASR. To combine the strength of both DenseNet and ResNet,
DenseRNet adopts the “building blocks” of ResNet with differ-
ent convolutional layers, receptive field sizes and growth rates
as basic components to be densely connected to form the so-
called denseR blocks. By concatenating the feature maps of all
preceding layers as inputs, DenseRNet can not only strengthen
gradient back-propagation for vanishing-gradient problem, but
also exploit multi-resolution feature maps. Unlike [8], DenseR-
Net is implemented using a fully convolutional architecture, and
no Bi-directional Long Short-Term Memory (BLSTM) layer is
used to model temporal sequence. To evaluate the effective-
ness of DenseRNet, we conducted extensive experiments on the
CHiME-3 challenge. The final DenseRNet system can achieve
7.58% in terms of word error rate (WER), which outperforms
official baseline (10.23%) by a large margin.

2. Review of DenseNet and ResNet
In this section, we will briefly review ResNet and DenseNet
architectures.

2.1. DenseNet: Densely connected convolutional network

DenseNet is composed of multiple dense blocks. Each block
can be further divided into several densely connected convolu-
tion layers (see Fig. 1a). Each layer is defined as a basic com-
ponent in a dense block, which contains composite functions of
BN, rectifier non-linearity (ReLU) activation, convolution and
dropout. Specifically, let Hl() be a non-linear transformation
of the l-th layer. This receives the feature maps of all preceding
layers, denoted by x0, x1, ..., xl−1, as input

xl = Hl([x0, x1, ..., xl−1]) (1)
where [...] refers to the concatenation of all preceding layers.
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Figure 1: Illustration of a) dense block, b) residual block and c) denseR block architectures.

According to [16], each Hl takes k×(l−1)+k0 input fea-
ture maps and produces k-dimensional output, where k0 is the
dimension of block input x0, and k is referred to as the growth
rate. To prevent the block growing too wide and to improve
parameter efficiency, the growth rate k is practically limited to
a small integer (k = 12). In addition, this k is fixed for each
dense block.

Like standard CNN architectures such as VGGNet [19], the
dense blocks can be connected into a network. A transition layer
is further inserted between two adjacent dense blocks to change
the feature map sizes. Such transition layers are composed of a
1×1 convolution followed by a 2×2 pooling operation.

2.2. ResNet: Residual Network

Just as in DenseNet, ResNet consists of several residual blocks.
According to [20], each block is composed of multiple “build-
ing blocks”. These “building blocks” are defined as basic com-
ponents in ResNet, which contain several convolution layers
with a “short connection”, as shown in Fig. 1b. Specially, the
output xl of the l-th component can be expressed as

xl = Fl(xl−1) + xl−1 , Hr
l (xl−1) (2)

where xl−1 is the input feature map, F is a composite of 2 or 3
non-linear transformations H , and Hr

l is a residual transforma-
tion that sums the identity mapping of the input to the output.
As shown in eq.(2), Hr

l allows for the reuse of features and
permits the gradient to flow directly to earlier layers.

According to [20], He et al. followed the design rules of
VGGNet [19], in which the width of each residual block (or the
number of channels) started from 64 in the first residual block,
and then increased by a factor of 2 for the remaining blocks.

In [8], Heymann et al. applied WRN as a backend acous-
tic model for multichannel speech recognition, and achieved
a state-of-the-art performance. Compared with ResNet,
DenseNet has several compelling advantages: in addition to
the advantage of alleviating the vanishing-gradient problem,
DenseNet can further strengthen feature propagation and ex-
ploit multi-resolution feature maps. All the above reported
works motivate us to combine the strength of both DenseNet
and ResNet for more powerful backend acoustic modeling. In
the next section, the proposed DenseRNet will be detailed.

3. DenseRNet: Densely connected Residual
Network

DenseRNet takes the similar hierarchical architecture of
DenseNet and ResNet, which consists of multiple denseR
blocks (see Fig. 1c). In this section, we first describe the struc-
ture of the denseR block, followed by the introduction of tran-
sition layers that will be inserted between denseR blocks. Then
the DenseRNet-based backend acoustic model is introduced and
finally, we will discuss the parameter settings for this model.

3.1. denseR block

The denseR block is composed of several basic components
(i.e., “building blocks” of ResNet). The basic components in
a block are densely connected. Specifically, the l-th componen-
t receives the output of all preceding components, denoted as
x0, x1, ...xl−1, the output can be expressed as

xl = Hr
l ([x0, ..., xl−1]) (3)

where the denseR block introduces residual transformation Hr
l

same as the eq.(2). As shown in Fig.1, we can see that the
proposed denseR block architecture combines both dense and
residual block structures. In summary, the denseR block takes
the dense connection structure of the basic components, which
aim to combine the advantages of both DenseNet and ResNet.
In this proposed DenseRNet model, two additional layers are
used for improving the computational efficiency.

3.2. Bottleneck layer

Just as in [16], an additional bottleneck layer, that is a 1 × 1
convolution, can be introduced before each basic componen-
t. The bottleneck layer can further reduce the number of input
feature maps [x0, ..., xl−1] and thus improve the computation-
al efficiency. In practice, we set this number to be same as the
growth rate k.

3.3. Transition layer

The transition layer is inserted into two adjacent denseR blocks
to construct the DenseRNet. For speech recognition, the tran-
sition layer is designed as a composite of a 1×1 convolution
layer and a pooling operation. The transition layer can further
improve the model compactness by reducing the number of fea-
ture maps before feeding into the next denseR block.
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Figure 2: The architecture of the DenseRNet-based backend a-
coustic model. The annotations in gray indicate the dimension
of the tensors where B is the mini-batch size and T is the number
of frames of the largest utterance within the batch.

3.4. DenseRNet-based backend acoustic model

The architecture of the DenseRNet-based backend acoustic
model is shown in Fig. 2.

The input to DenseRNet is a D×T×C tensor, where D de-
notes the dimension of the features, T is the number of frames,
and C are the channels. In all experiments, the 80 dimensional
mean-normalized log-mel filterbank features are extracted from
a given utterance. With T frames in the utterance, the dimen-
sion of input tensor is thus 80 × T . In addition, the delta and
delta-delta of the input are further exploited. The final input to
DenseRNet is a 80× T × 3 tensor.

The first part of the DenseRNet is an initial convolution lay-
er, which comprises 32 convolutions of size 7×7 with stride
2×1 followed by max-pooling with size of 2×1.

The second part of the network is composed of three denseR
blocks. Following the terminology of DenseNet, each denseR
block may be configured with four parameters (L, k, (N,S)),
where L is the number of basic components, k the growth rate.
(N,S) is related to the basic component: where N is the num-
ber of convolution layers and S is the kernel size. We will dis-
cuss the setting of those parameters in section 3.5. In Fig. 2,
L is set to 10 and the growth rate k of the three denseR blocks
are set to 32, 64, 128 respectively. As mentioned, a transition
layer is inserted between adjacent denseR blocks for improving
the model compactness and a 1 × 1 convolutional layer is in-
serted before connecting to the final layers. The last part of the
model consist of two fully-connected layers with batch normal-
ization and ReLU activations. The final output are the posterior
probabilities for the context-dependent states for each frame.

3.5. Discussion

In this section, we will focus on discussing how to set the pa-
rameters of denseR blocks, i.e., the growth rate k and the num-
ber of convolution layers N .
Growth rate k. As described in section 2, k is fixed to a small
integer in DenseNet, which aims to improve model compactness
However, each basic component produces the k-dimensional
output. This setting may not be optimal. Furthermore, k is
fixed for each dense block. In ResNet, the width of each resid-
ual block increases by a factor of 2.
Number of convolution layers N . N is related to the basic
components. In DenseNet, the basic component is a convolution
layer, i.e., N=1. While in ResNet, the basic component is a

Table 1: Performance comparison of DenseRNet with differ-
ent configurations in terms of real word error rate(WER) in re-
al test set (in %). DenseRNet is configured with parameter-
s (L, k, (N,S)), where L is the number of basic components,
and k the growth rate. (N,S) is related to the basic componen-
t: where N is the number of convolution layers and S is kernel
size.

Model L k (N,S) #Para(MB) WER
M1 22 (24 24 24) (1,3) 7.81 11.7
M2 23 (16 32 64) (1,3) 13.5 11.2
M3 10 (32 64 128) (1,3) 11.9 11.6
M4 10 (32 64 128) (2,3) 13.8 7.90
M5 10 (32 64 128) (1,5) 16.1 8.39
M6 10 (32 64 128) (3,3) 15.8 7.58

“building block” containing multiple convolution layers, e.g.,
N = 2 or 3. It is unclear what is optimal setting of N .

Based on the above discussion, we will study the following
questions for the multichannel speech recognition task:
Q1. How to set the growth rate k?
Q2. Whether it is necessary to fix the growth rate k.
Q3. How to set the number of convolution layers: N?

4. Experimental evaluation
To evaluate the effectiveness of DenseRNet-based backend a-
coustic model, extensive experiments are conducted on the
CHiME-3 dataset [21]. For fair comparison, all the frontend
processing is obtained by using six channel Generalized Eigen-
value (GEV) beamformer, and the backends are trained on all
six channels of noisy utterances [9].

4.1. Implementation

Our implementation for CHiME-3 follows the structure as
shown in Fig. 2. The input to DenseRNet is described in sec-
tion 3.4. We adopt batch normalization before each convolu-
tion and activation, following [8] and initialize the weights as
in [22]. Dropout [23] with a probability of 0.5 is added across
the layer except for the input and output layers. To optimize the
model, we use ADAM [24] with learning rate 8 × 10−4, and a
frame-level cross entropy (CE) criterion is adopted as the objec-
tion function. The remaining experimental settings are similar
to [8] and we use the Keras library for all experiments [25].

4.2. Evaluation on different parameter settings

In the following we evaluate the DenseRNet configured with d-
ifferent parameter settings of CHiME-3. The parameters to be
evaluated includes: the growth rate k, the number of basic com-
ponents L, and (N,S) is the parameters of basic component.

The experimental results are shown in Table 1 where we
also list the model size in Mbytes (MB). From Table. 1, we
can see that when the growth rate k is fixed to 24, the WER is
11.7% as (M1). While in M2, the increasing growth reduces
WER 11.2%. This observation may answer Q2, in that it is not
necessary to fix growth rate k.

From M3, we reduce L to 10, and find that the performance
slightly degrades to 11.6%. This may be due to the fact that the
model with a configuration of smaller L, (i.e., L=23 vs. L=10),
the receptive field size is smaller. In this case, it indicates that a
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Table 2: Comparison of various Multichannel Systems based
on CE criterion. The individual abbreviations mean: ”Kaldi”:
baseline back-end, ”DenseRNet”: DenseRNet with same con-
figurations as M4, ”DenseNet”: DenseNet with configurations
{L = 132, k = 24} [16], ”ResNet”: remove the input con-
catenate operation on the basis of ”DenseRNet”. Besides, W-
ER(R/S) indicates word error rate of real and simulation test
data, respectively.

Back-end Param(M) WER(R/S)
Kaldi 30.2 10.2/9.62

WRBN 18.5 9.16/10.5
DenseNet 10.7 9.28/9.45
ResNet 20.2 8.23/8.77

DenseRNet 13.8 7.90/8.10

network with larger receptive field size may be better, and it is
unnecessary to set k to a large value (Q1).

We further evaluate the effect of N,S, the parameters of the
basic component, i.e., the number of convolution layers and S,
the kernel size. From M4, when we increase the N to 2, we find
that the WER significantly reduces from 11.6% to 7.9%. This
may also be attributed to the increasing receptive field size. To
examine this further, we conduct the experiment with configu-
ration (N,S)=(1, 5). Results show that WER slightly degrades
from 7.9% to 8.39% which means that two convolution layers
(M5) can achieve 0.49% absolute reduction based on the com-
parable receptive field (M4). This reveals that more convolution
layers in the basic component can help yield performance im-
provement (Q3). Since receptive field size is the same in M4
and M5, it demonstrates that the increasing network depth may
have a similar effect as having a larger receptive field size. The
best performance is achieved with (N,S)=(3, 3), where a WER
of 7.58% has been achieved in M6.

4.3. Performance comparison with different models

This experiment compares the proposed DenseRNet with other
backend acoustic models, including the 6-layer DNN of the offi-
cial baseline, WRBN [8] and with ResNet and DenseNet.Except
for the official baseline performance, we have implemented the
models using Keras[25]. The experimental results may differ
slightly with the literature, mainly due to variations in fron-
tend processing. For fair comparison, we configure the model to
have the similar receptive field size, as shown in Table 2. From
the table we can see that DenseRNet achieves the best perfor-
mance, outperforming the official baseline by a large margin.

4.4. Experiments on robustness of DenseRNet

In this experiment, we evaluates the robustness of DenseRNet.
Three kinds of speech, (i.e., CH5, Enh, CH0) from CHiME-3,
are used for evaluation [21]. Results are reported in Table 3.
Firstly, we can see that the performance of DenseRNet is supe-
rior to the 6-layer DNN model for all evaluations. For different
evaluation conditions, DenseRNet can achieve similar perfor-
mance on Enh (6.46%) and CH0 (7.90%). DenseRNet is also
more robust than the baseline to beamforming-enhanced speech
as well as near and far-field speech.

Fig. 3 gives further insight into the robustness of DenseR-
Net by analyzing the mean feature maps from one CHiME-3
real test set utterance. In the first column, which shows three
different inputs, i.e., CH5, Enh, and CH0, we see they are

Table 3: Compare 3 input feature (CH5,Enh,CH0) on DenseR-
Net, DNN (official baseline), BLSTM separately. The individual
abbreviations mean: ”CH5”, ”Enh”, ”CH0” represent the 5-th
noisy far-field, the beamforming-enhanced and near-field utter-
ances, respectively. ”Real” and ”Simu” indicate word error
rate of real and simulation test data, respectively

Model input Real Simu

DenseRNet
CH5 14.1 9.73
Enh 7.90 8.10
CH0 6.46 4.29

DNN
CH5 32.2 20.9
Enh 10.2 9.69
CH0 8.09 5.10

clearly different. From the second to the last column in the
figure, which corresponds to the mean of output feature maps
from the 2rd denseR block, we can see that they tend to have
similar activations. This demonstrates a certain robustness to
beamforming-enhanced speech as well as near, far-field speech.

Figure 3: The mean input feature maps in the 2rd denseR block
for the real test set for inputs ’CH5’, ’Enh’ and ’CH0’.

5. Conclusions
In summary, this paper proposes a novel architecture which
we call DenseRNet. It adopts a similar hierarchical architec-
ture to DenseNet and ResNet, consisting of multiple denseR
blocks. To combine the strength of both DenseNet and ResNet,
DenseRNet adopts the “building block” of ResNet as its basic
component, densely connected in the denseR block. DenseR-
Net can not only strengthen gradient back-propagation for the
vanishing-gradient problem, but also exploit multi-resolution
feature maps. To evaluate its effectiveness, we conducted exper-
iments using the CHiME-3 corpus with different convolution-
al layers, receptive field sizes and growth rates. We achieved
a WER 7.58% using a DenseRNet-based acoustic model on
beamforming-enhanced speech with the six channel real test
data, outperforming the official baseline WER of 10.23%. Ad-
ditional experimental results are demonstrate the robustness of
DenseRNet to beamforming-enhanced speech as well as near
and far-field speech.
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