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Abstract
This study addresses the problem of learning robust frame-level
feature representation for unsupervised subword modeling in
the zero-resource scenario. Robustness of the learned features
is achieved through effective speaker adaptation and exploiting
cross-lingual phonetic knowledge. For speaker adaptation, an
out-of-domain automatic speech recognition (ASR) system is
used to estimate fMLLR features for untranscribed speech of
target zero-resource languages. The fMLLR features are ap-
plied in multi-task learning of a deep neural network (DNN) to
further obtain phonetically discriminative and speaker-invariant
bottleneck features (BNFs). Frame-level labels for DNN train-
ing can be acquired based on two approaches: Dirichlet pro-
cess Gaussian mixture model (DPGMM) clustering, and out-
of-domain ASR decoding. Moreover, system fusion is per-
formed by concatenating BNFs extracted by different DNNs.
Our methods are evaluated by ZeroSpeech 2017 Track one,
where the performance is evaluated by ABX minimal pair dis-
criminability. Experimental results demonstrate that: (1) Using
an out-of-domain ASR system to perform speaker adaptation of
zero-resource speech is effective and efficient; (2) Our system
achieves highly competitive performance to state of the art; (3)
System fusion could improve feature representation capability.
Index Terms: zero resource, unsupervised learning, robust fea-
tures, speaker adaptation, multi-task learning

1. Introduction
With the advances of deep neural network (DNN) based acous-
tic models (AMs) [1] and language models (LMs) [2], state-
of-the-art automatic speech recognition (ASR) systems have
demonstrated fairly impressive performance in terms of word
accuracy [3, 4]. Typically the training of AMs requires hun-
dreds to thousands of hours of transcribed speech. This leads to
the fact that high-performance ASR systems are available only
for major languages [5]. Even for resource-rich languages like
English and Mandarin, preparing transcriptions for the available
training speech requires a time-consuming task requiring con-
siderable human effort. For many languages in the world, for
which very little or no transcribed speech is available [6], con-
ventional methods of AM training can not be directly applied.

Unsupervised acoustic modeling aims at modeling speech
at subword or word level, assuming that only untranscribed raw
speech are available [7–10]. This is often referred to as the zero-
resource problem. The Zero Resource Speech Challenges 2015
(ZeroSpeech 2015) [11] and 2017 (ZeroSpeech 2017) [6] pre-
cisely focused on unsupervised speech modeling without tran-
scription. ZeroSpeech 2017 was organized to tackle two sub-
problems, namely unsupervised subword modeling (Track 1)
and spoken term discovery (STD) (Track 2). Track 1 posed a
research question of how to learn a frame-level feature repre-
sentation that is discriminative for subword-level units and ro-

bust to linguistically irrelevant variations, e.g., speaker change,
emotion, channel, etc. To this end, researchers proposed various
feature types for comparison, such as posteriors [5, 12, 13] and
BNFs [5,14,15]. Track 2 was focused on developing algorithms
for discovering repeated speech patterns in audio streams. The
problems concerned in the two tracks are closely related and
essential in unsupervised speech modeling. Robust feature rep-
resentation is found to be preferable as compared with conven-
tional spectral features (e.g. MFCCs) for downstream appli-
cations like STD [16]. Whilst accurate STD results could be
beneficial to DNN-based supervised learning of feature repre-
sentation [9, 15, 17]. The present study addresses the problem
of Track 1, learning of feature representation for unsupervised
subword modeling.

Speaker adaption is critical to robust acoustic modeling. It
is widely acknowledged that speaker adaptive training (SAT) is
effective in improving ASR performance, especially for large
vocabulary tasks [18–20]. Approaches to SAT are divided into
two categories: model-based approaches, e.g., maximum like-
lihood linear regression (MLLR) [21], and feature-based ap-
proaches, e.g., feature-space MLLR (fMLLR) [22], i-vectors
[23], speaker codes [24], and other appending features [25]. All
of these methods are based on the assumption that speech tran-
scription and/or speaker identity information are available. In
the zero-resource case, Heck et al. proposed to estimate fM-
LLRs based on frame-level cluster labels that were obtained by
a Dirichlet process Gaussian mixture model (DPGMM) algo-
rithm [12]. The cluster labels are regarded as pseudo transcrip-
tions for the target speech, which facilitate context-dependent
GMM-HMM (CD-GMM-HMM) acoustic modeling with fM-
LLR features. This system demonstrated the best performance
among all submitted systems in the ZeroSpeech 2017. Zeghi-
dour et al. regards speaker adaptation as a problem of dis-
entangling speaker information from phoneme information in
speech [26]. They proposed to train subword and speaker same-
different tasks within a triamese network, and demonstrated the
effectiveness of disentanglement between these two types of
information. This approach assumes availability of subword
same-different supervision, which could be derived from STD
results.

For major languages, high-performance ASR systems can
be trained with large-scale speech corpora that cover hundreds
of speakers [27, 28]. The richness of speaker diversity and lin-
guistic variation in these out-of-domain corpora could be lever-
aged for learning robust feature representations in the zero-
resource scenario. In [5], Shibata et al. made use of a Japanese
ASR system to estimate fMLLR features and demonstrated very
good performance in Track 1 of ZeroSpeech 2017. In the
present study, we propose a framework of unsupervised learning
of multilingual bottleneck features. To facilitate fMLLR-based
SAT with untranscribed speech, frame-level labels are gener-
ated either by DPGMM clustering or using the state-level align-
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ment information from an out-of-domain ASR system. BNFs
are obtained from a multi-task learning DNN (MTL-DNN),
which is trained with these two types of labels. As an alterna-
tive approach, the BNFs can be obtained directly from the same
out-of-domain AMs. We also investigate on the efficacy of sys-
tem fusion by concatenating the BNFs obtained from different
DNNs.

2. Speaker adaptation with out-of-domain
data

Feature-based speaker adaptation, e.g., fMLLR, is an effective
approach to improving robustness of speech features. In the
case of zero resource, we propose to leverage out-of-domain
transcribed and speaker-annotated speech from a resource-rich
language to model the speaker variation in target speech. Given
the out-of-domain data, context-dependent GMM-HMM (CD-
GMM-HMM) AMs are trained with raw spectral features. The
models are used to forced-align the training data to provide
supervision for vocal tract length normalization (VTLN) [29],
linear discriminant analysis (LDA) [30], maximum likelihood
linear transforms (MLLT) [31] and fMLLR estimation [32].
Subsequently CD-GMM-HMM models with SAT (CD-GMM-
HMM-SAT) are trained, and used to estimate fMLLR trans-
forms for the target zero-resource speech utterances. It is noted
that the estimated fMLLR features of target speech can be used
directly for subword modeling. The fMLLR features are ex-
pected to serve a better baseline than raw spectral features like
MFCCs for subsequent feature representation learning and sys-
tem building.

3. Frame labeling
Frame labeling is an essential step to prepare the target speech
utterances for DNN based subword discriminative modeling.
While frame labels are not needed in some of the DNN mod-
els like autoencoders (AEs), there were studies suggesting that
AEs might not be a good approach to improving acoustic fea-
tures [33]. In this study, two frame-labeling approaches are
investigated, namely, DPGMM clustering and out-of-domain
ASR decoding.

DPGMM is a non-parametric Bayesian extension to GMM,
in which a Dirichlet process prior replaces the vanilla GMM
[34]. One advantage of the DPGMM clustering algorithm is that
the cluster number does not need to be pre-defined. This makes
the algorithm very suitable for the problem of unsupervised
acoustic modeling, as the number of basic speech units is un-
known for a zero-resource language. Previous studies showed
successful application of DPGMM to unsupervised word clus-
tering [35], frame-level feature clustering for subword discrim-
inative modeling [36] and unsupervised fMLLR-based speaker
adaptive training [12, 37].

Let us consider M zero-resource languages. For the i-th
language, frame-level fMLLR features, estimated as described
in Section 2, are denoted as {xi

1, x
i
2, . . . , x

i
L}, where L is

the number of frames in the utterance. By applying DPGMM
clustering, K Gaussian components are obtained to represent
K clusters of frame-level features. The frame-level labels
{li1, li2, . . . , liL}, are obtained by

lit = arg max
1≤k≤K

pi,k, (1)

where pi,k = P (k|xi
t) denotes the posterior probability of xi

t

with respect to the k-th Gaussian component.
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Figure 1: DNN for extracting LI-BNF, MUBNF and OSBNF

A Metropolis-Hastings based split/merge sampler is
adopted for the inference of DPGMM parameters [34], follow-
ing other studies on ZeroSpeech Challenges [12, 36].

Frame labeling can also be done with an out-of-domain
ASR system, which is typically trained with a large amount of
transcribed speech in a resource-rich language. The AM in such
ASR system provides fine-grained speech representation of the
language. Given an input speech utterance of the target zero-
resource language, the out-of-domain ASR system can be ap-
plied to assign a language-mismatched state label to each frame
of the utterance. It must be noted that the result of ASR decod-
ing depends on the relative weighting of AM and LM. In our
application, the LM carries a a very small weight, such that the
acquired frame labels mainly reflect the acoustic properties of
target speech.

4. Multi-task learning for BNFs
After obtaining frame-level labels for the training utterances
of target speech, a DNN is trained with the fMLLR fea-
tures, with the goal of extracting BNFs for subword mod-
eling. BNFs have been shown to provide a compact
and phonetically-discriminative representation, and suppress
linguistically-irrelevant variation, e.g., speaker identity, of the
input speech [38]. In this study, a multi-task learning (MTL)
DNN is adopted in order to leverage the phonetic diversity in
different speech tasks and different languages [39]. The pro-
posed DNN architecture is shown as in Figure 1. The DNN
supports a total of M + 1 learning tasks, which correspond to
the M target zero-resource languages and the out-of-domain
ASR. For the zero-resource language tasks, the frame labels
are obtained by applying DPGMM clustering to training speech
of the M target languages, while the out-of-domain ASR sys-
tem generates an additional frame label. The hidden layers of
the DNN, including a low-dimensional linear bottleneck layer,
are shared across all tasks, while the soft-max output layers are
task-specific. After multi-task training, the DNN is used to gen-
erate language-independent BNFs (LI-BNFs) for subword dis-
criminability task.

It must be noted that one could also choose either the M
language-dependent DPGMM label prediction tasks or the addi-
tional out-of-domain label prediction task for DNN training. As
illustrated in Figure 1, the BNFs generated by these sub-tasks
are denoted as multilingual unsupervised BNFs (MUBNFs) and
the out-of-domain supervised BNFs (OSBNFs).

There are two main reasons why the MTL approach is
adopted. First, there are two types of frame labels being in-
vestigated in this work, namely the DPGMM cluster labels and
ASR decoding labels. The two tasks of label prediction are be-
lieved to be positively correlated and therefore are expected to
benefit from MTL [39]. Second, one of the requirements of Ze-
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roSpeech 2017 is that the learned feature representations for all
target languages be generated by exactly the same system input
and output. The idea of training a separate DNN for each target
language would not satisfy the requirement1.

5. System fusion
If there are multiple systems developed for feature represen-
tation learning which provide complementary information, fu-
sion of these systems is expected to further improve the fea-
ture representation capability. System fusion can be done at
either model level or output level. MTL is considered a kind
of model-level fusion. LI-BNFs, as described in Section 4, can
be considered as model-level fusion of MUBNFs and OSBNFs.
Output-level system fusion can be realized by concatenating
multiple feature representations. In this study, the effectiveness
of output-level fusion is validated by:

1. Concatenating language-mismatched BNFs (LM-
BNFs), which are obtained from the out-of-domain
DNN-HMM AM, and LI-BNFs (LM-BNF + LI-BNF);

2. Concatenating LM-BNFs, MUBNFs and OSBNFs (LM-
BNF + MUBNF + OSBNF).

6. Experiments
6.1. Dataset and evaluation metric

Experiments are carried out with development data of Ze-
roSpeech 2017 Track one [6]. The development data consists of
three languages, i.e., English, French and Mandarin. Each lan-
guage contains separate training and test sets of untranscribed
speech. Speaker identity information is made publicly known
for train sets while unknown for test sets. Test sets are organized
into subsets of differing utterance length (1s, 10s and 120s). De-
tailed information of the dataset is listed in Table 1.

Table 1: Development data in ZeroSpeech 2017 Track one

Training Test

Duration #speakers Duration

English 45 hrs 60 27 hrs
French 24 hrs 18 18 hrs
Mandarin 2.5 hrs 8 25 hrs

The evaluation metric of ZeroSpeech 2017 is ABX subword
discriminability. Briefly speaking, the ABX task is to decide
whether X belongs to x or y if A belongs to x and B be-
longs to y, where A, B and X are three speech segments, x
and y are two phonemes that differ in the central sound (e.g.,
“beg”-“bag”). Each pair of segments A and B are generated
by the same speaker. ABX error rates for within-speaker and
across-speaker are evaluated separately, depending on whether
X and A(B) belong to the same speaker. Dynamic time warp-
ing (DTW) and cosine distance are used to measure segment-
level and frame-level dissimilarity, respectively.

6.2. Out-of-domain ASR system

A Cantonese ASR is selected as the out-of-domain ASR sys-
tem. The ASR is trained with CUSENT, a read speech cor-
pus developed by The Chinese University of Hong Kong [28].
There are 20, 378 training utterances from 34 male and 34 fe-
male speakers, with a total of 19.3 hours speech. Kaldi [40] is

1Although better performance was found by language-specific BNFs
during our experiments, we do not report it in this paper.

used to train two AMs, one is CD-GMM-HMM-SAT, the other
is DNN-HMM. Target labels for DNN-HMM training are state
alignments of CUSENT training data generated by CD-GMM-
HMM-SAT model. Input features are 40-dimensional fMLLRs
for CD-GMM-HMM-SAT, or fMLLRs by splicing with context
size±5 for DNN-HMM. The fMLLR features are generated by
performing VTLN towards 39-dimensional MFCCs+∆+∆∆,
and processed by splicing with context size ±3 to estimate
40-dimensional LDA and MLLT, followed by fMLLR estima-
tion. The total number of CD-HMM states are 2462. DNN-
HMM has 7 hidden layers, with dimensions 440-1024 × 5-
40-1024-2462, and sigmoid activation function except for the
40-dimensional linear bottleneck layer. A syllable trigram lan-
guage model trained with transcriptions of CUSENT training
data is used during decoding. The language model is trained
with SRILM toolkit [41].

6.3. Speaker adaptation of target speech

The Cantonese ASR is used to perform fMLLR-based speaker
adaptation of target zero-resource speech in a two-pass proce-
dure. In the first-pass, target speech utterances are decoded
by the ASR in a speaker-independent manner using unadapted
features, from which initial fMLLR transforms are estimated.
In the second-pass, target speech features transformed by the
initial fMLLRs are decoded by the ASR in a speaker-adaptive
manner. Subsequently, the final fMLLR transforms for the tar-
get speech are estimated.

6.4. Frame labeling and MTL-DNN training

Two frame labeling approaches are implemented. DPGMM
clustering based frame labeling for target zero-resource speech
is implemented with tools developed by Chang et al. [34].
Frame-level features for clustering are 40-dimensional fMLLRs
for ZeroSpeech 2017 training sets. Frames of each language are
clustered individually. The numbers of clustering iterations for
English, French and Mandarin corpora are 120, 200 and 3000.
After clustering, the numbers of obtained DPGMM clusters are
1118, 1345 and 596, respectively. Each frame is assigned with
a DPGMM label.

The out-of-domain ASR based frame labeling is imple-
mented by decoding target zero-resource speech by the Can-
tonese DNN-HMM ASR. After decoding, lattices are converted
to one best path for each utterance, with LM to AM weight
ratio set to 0.001. Each best path comprises a sequence of CD-
HMM states of the Cantonese AM. These CD-HMM states are
regarded as out-of-domain ASR based frame labels.

MTL-DNN is trained with 40-dimensional fMLLRs with
context size ±5 for training sets of three target zero-resource
languages. There are 4 equally weighted tasks in MTL, 3
language-dependent DPGMM label prediction tasks and an out-
of-domain Cantonese CD-HMM state prediction task. The neu-
ral network structure is 440-1024 × 5-40-1024-“Block out-
put layer”, where block softmax output layer dimensions for
4 tasks are 1118, 1345, 596 and 2462, respectively. Af-
ter MTL-DNN training, 40-dimensional language-independent
BNFs (LI-BNFs) for test sets of target languages are extracted
and used for ABX task. Similarly, multilingual unsupervised
BNFs (MUBNFs), extracted by MTL-DNN with only the first 3
DPGMM label prediction tasks, and out-of-domain supervised
BNFs (OSBNFs), extracted by STL-DNN with only the Can-
tonese CD-HMM state prediction task, are also used for ABX
task. The dimensions of both MUBNFs and OSBNFs are 40.
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Table 2: ABX error rate (%) on the proposed methods, MFCC and state of the art of ZeroSpeech 2017

Within-speaker Across-speaker Avg.

English French Mandarin Avg. English French Mandarin Avg.
1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s 1s 10s 120s

Baseline (MFCC) [6] 12.0 12.1 12.1 12.5 12.6 12.6 11.5 11.5 11.5 12.0 23.4 23.4 23.4 25.2 25.5 25.2 21.3 21.3 21.3 23.3 17.7
fMLLR 8.0 8.2 7.3 10.3 10.3 9.1 9.3 9.3 8.4 8.9 13.4 12.0 11.3 17.2 15.8 14.8 10.7 10.2 9.4 12.8 10.8
MUBNF 7.4 6.9 6.3 9.6 9.0 8.1 9.8 8.8 8.1 8.2 10.9 9.5 8.9 15.2 13.0 12.0 10.5 8.9 8.2 10.8 9.5
OSBNF 7.2 7.1 6.3 10.2 9.7 8.7 9.1 8.6 7.6 8.3 10.0 9.7 8.6 13.9 13.4 11.6 9.0 8.4 7.5 10.2 9.3
LI-BNF 6.9 6.6 6.1 9.5 9.2 8.4 9.2 8.5 7.9 8.0 10.0 8.9 8.2 14.3 12.9 11.5 9.5 8.5 7.7 10.2 9.1
LM-BNF 7.2 6.8 6.1 9.6 9.0 8.0 8.7 7.6 6.8 7.8 10.6 9.6 8.7 14.2 13.2 11.5 8.5 7.6 6.7 10.1 8.9
LM-BNF + LI-BNF 7.0 6.6 6.0 9.3 8.8 7.9 8.6 7.5 6.7 7.6 10.3 9.3 8.4 13.9 12.9 11.4 8.5 7.6 6.7 9.9 8.7
LM-BNF + MUBNF + OSBNF 6.8 6.4 5.8 9.0 8.8 7.8 8.5 7.7 6.8 7.5 9.9 9.0 8.2 13.6 12.6 11.1 8.4 7.7 6.7 9.7 8.6

Heck et al. [12] 6.9 6.2 6.0 9.7 8.7 8.4 8.8 7.9 7.8 7.8 10.1 8.7 8.5 13.6 11.7 11.3 8.8 7.4 7.3 9.7 8.8
System 1, Shibata et al. [5] 6.7 6.5 5.7 9.7 9.2 7.9 9.8 9.2 8.2 8.1 10.1 9.2 8.2 13.7 12.4 10.8 10.4 9.5 8.0 10.3 9.2

6.5. System fusion

For model-level system fusion approach, LI-BNFs can be con-
sidered as fusion of MUBNFs and OSBNFs. For output-level
system fusion approach, two types of feature concatenation
are implemented, i.e., concatenating LM-BNFs and LI-BNFs,
resulting in 80-dimensional features, and concatenating LM-
BNFs, MUBNFs and OSBNFs, resulting in 120-dimensional
features. LM-BNFs are generated by feeding forward fMLLRs
for target zero-resource languages to bottleneck layer of the
Cantonese DNN-HMM AM. Attributes of the concerned BNFs
are listed in Table 3. In this Table, unsupervised DPGMM la-

Table 3: Attributes of LM-BNF, MUBNF, OSBNF and LM-BNF

LI-BNF MUBNF OSBNF LM-BNF

Training method MTL MTL STL STL

Training data ZeroSpeech 2017 fMLLR CUSENT fMLLR

Label type Sup. & Unsup. Unsup. Sup. Sup.

Dimension 40

bels are denoted as “Unsup.”, while Cantonese CD-HMM state
labels are denoted as “Sup.”.

7. Results and analyses
Experimental results of our proposed methods and state of the
art of ZeroSpeech 2017 are summarized in Table 2. Baseline
(MFCC) is released by challenge organizers. The sign “+” in
Table 2 denotes output-level system fusion, i.e., feature con-
catenation. From Table 2, several observations are made.

(1) The fMLLR features consistently outperform MFCCs
on all target zero-resource languages, with relative ABX error
rate reduction 25.8% in within-speaker and 45.1% in across-
speaker conditions. Note that in this system, training sets of
ZeroSpeech 2017 data are not required. The results demonstrate
that speaker adaptation based on an out-of-domain ASR system
is effective and efficient for unsupervised subword modeling.
The learned fMLLRs achieve larger ABX error rate reductions
on long test utterances than on short ones. This is probably
because fMLLR-based speaker adaptation does not work well
on very short speech.

(2) MTL-DNN training with fMLLR features followed by
system fusion brings the best performance. LI-BNFs, trained
with both DPGMM labels and out-of-domain HMM state la-
bels, outperform fMLLRs with relative ABX error rate reduc-
tion 10.1% in within-speaker and 20.3% in across-speaker con-
ditions. Our best system concatenates LM-BNFs, MUBNFs and
OSBNFs and achieves 7.5%/9.7% average ABX error rates in
within/across-speaker conditions. This performance is highly
competitive with the best submitted system for the challenge
by Heck et al. [12] (7.8%/9.7%). It must be noted that sys-

tem development in [12] does not rely on any out-of-domain
resources, while our system uses a 19.3-hour Cantonese tran-
scribed speech corpus. Our best system outperforms System
1 of Shibata et al. [5] (8.1%/10.3%) in both conditions. Note
that a 240-hour Japanese transcribed speech corpus is used to
develop System 1 of [5].

(3) Improved feature representation capability could be
achieved by combining in-domain and out-of-domain resources
with system fusion methods. Compared with MUBNFs, the
advance of LI-BNFs is probably because the additional task
of predicting out-of-domain CD-HMM state labels serves as
a supplement to in-domain DPGMM label prediction tasks.
DPGMM labels are generated in an unsupervised, purely data-
driven manner, whilst out-of-domain CD-HMM state labels
regularize in-domain data in a phonetically-aware form. On
the other hand, the system of concatenating LM-BNFs, MUB-
NFs and OSBNFs achieves better ABX task performance than
each of these single systems. The LM-BNFs, extracted by an
out-of-domain DNN-HMM AM, provide language-mismatched
phonetically-discriminative representation. By concatenating
LM-BNFs, MUBNFs and OSBNFs, phonetic information in
both domains is combined. The advance of feature concate-
nation method demonstrates the complementarity among BNFs
extracted by in-domain and out-of-domain DNNs.

8. Conclusions
This paper presents a study on exploiting speaker and phonetic
diversity of mismatched language resources for unsupervised
subword modeling of zero-resource speech. Out-of-domain
transcribed and speaker-annotated speech resources are em-
ployed to perform speaker adaptation of zero-resource speech.
Frame labeling methods including DPGMM clustering and out-
of-domain ASR decoding are adopted to provide frame-level
labels for multi-task learning DNN (MTL-DNN) training. Bot-
tleneck features (BNFs) extracted by MTL-DNN are used for
ABX subword discriminability task. Moreover, system fusion is
performed by concatenating BNFs extracted by different DNNs.
Experiments are carried out with Zero Resource Speech Chal-
lenge 2017 Track one. Experimental results show that: (1)
Speaker adaptation based on out-of-domain ASR system is ef-
fective and efficient; (2) Our best system achieves highly com-
petitive performance to state of the art; (3) Model and output-
level system fusion methods could improve feature representa-
tion capability.
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