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Abstract
Visual information can be incorporated into automatic

speech recognition (ASR) systems to improve their robust-
ness in adverse acoustic conditions. Conventional audio-visual
speech recognition (AVSR) systems require highly specialized
audio-visual (AV) data in both system training and evaluation.
For many real-world speech recognition applications, only au-
dio information is available. This presents a major challenge to
a wider application of AVSR systems. In order to address this
challenge, this paper proposes a semi-supervised visual feature
learning approach for developing AVSR systems on a DARPA
GALE Mandarin broadcast transcription task. Audio to visual
feature inversion long short-term memory neural networks (L-
STMs) were initially constructed using limited amounts of out
of domain AV data. The acoustic features domain mismatch a-
gainst the broadcast data was further reduced using multi-level
domain adaptive deep networks. Visual features were then au-
tomatically generated from the broadcast speech audio and used
in both AVSR system training and testing time. Experimental
results suggest a CNN based AVSR system using the proposed
semi-supervised cross-domain audio-to-visual feature genera-
tion technique outperformed the baseline audio only CNN ASR
system by an average CER reduction of 6.8% relative. In partic-
ular, on the most difficult Phoenix TV subset, a CER reduction
of 1.32% absolute (8.34% relative) was obtained.
Index Terms: audio-visual speech recognition, semi-
supervised, visual feature learning, domain adaptation

1. Introduction
Visual information can be incorporated into automatic speech
recognition (ASR) systems to improve their robustness in ad-
verse acoustic conditions. The use of visual features in audio-
visual speech recognition (AVSR) systems is motivated by the
bimodal speech generation mechanism [1, 2] and the ability of
humans to better distinguish spoken sounds when both audio
and video are available [3]. Additionally, the visual features
that are invariant to acoustic signal corruption can provide com-
plementary information to the speech recognizer.

In recent years, various AVSR modeling techniques [4, 5,
6, 7, 8, 9, 10] have been developed and yielded an impressive
improvement over the ASR systems using only audio in an ad-
verse environment. Conventional AVSR systems based on these
approaches require highly specialized audio-visual (AV) data in
both system training and evaluation. However, for many real-
world speech recognition applications, since only audio infor-
mation is available, conventional AVSR modeling techniques
are difficult to be applied. This presents a major challenge to a

wider application of AVSR systems.
This paper aims to construct AVSR systems on audio-only

data in real life, together with limited amounts of AV data,
which is often obtained in a constrained environment and thus
out of the domain of such audio-only data. Earlier works along
this line used inversion models [11, 12, 13] to produce the sim-
ulated articulatory features from speech signals for improving
the system performance. However, the acoustic feature domain
mismatch in the inversion model training and inference stages
is not discussed in these works. If the inversion models’ na-
ture is domain-specific, such domain mismatch will lead to the
generation of unreliable visual features that can degrade AVSR
system performance.

To address this issue, this paper proposes a novel semi-
supervised cross-domain visual feature learning approach for
developing AVSR systems on a typical real-world audio-only
speech recognition task - a DARPA GALE Mandarin broadcast
transcription task. In this approach, to handle multiple speaker
data sets and adverse acoustic conditions in practical applica-
tions, a small multi-speaker 3D AV data set [14] containing far-
field recordings is used for AV inversion model training; audio-
to-visual inversion long short-term memory neural network (L-
STM) models were initially trained using such limited out of
domain AV data; the acoustic features domain mismatch against
the broadcast data was further reduced using multi-level domain
adaptive deep networks; visual features were then automatical-
ly generated from the broadcast speech audio and used in both
AVSR system training and testing time. The proposed method
therefore allows a wider application of AVSR techniques to
many practical situations, when only in-domain audio data and
out-of-domain AV data are available.

The rest of this paper is organized as follows. Section 2 de-
scribes the 3D AV data set. The audio-to-visual feature learning
approaches are reviewed in Section 3. Section 4 proposes the
semi-supervised cross-domain visual feature learning approach.
The AVSR system architecture is presented in Section 5. Exper-
iments and results are reported in Section 6. Section 7 draws the
conclusions and future works.

2. 3D audio-visual data
The multi-speaker 3D AV data set [14] contains Mandarin Chi-
nese audio and visual speech recordings. The audio data was
recorded on both near-field (mouth-to-microphone distance of
10 cm) and far-field (mouth-to-microphone distance of 80 cm)
conditions with 16 kHz sampling rate, 16 bit encoding, and s-
ingle channel. The training set consists of 10 males and 10 fe-
males with 19.6 hours. The development set includes 4 males
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and 4 females with 5 hours. Both training and development sets
include near-field and far-field audio data. The corresponding
visual data was the 3D positions of 37 reflective markers on the
speakers’ faces and 4 headband markers, which was captured
by a commercially system called OptiTrack1 with six infrared
cameras at 100 fps. The acquired AV data were asynchronous,
since they were recorded on different machines. In each take,
the recording of 3D visual data only happened between the s-
tarting and ending signals, and such signals were also recorded
by the near-field and far-field microphones. Thus, the synchro-
nization of AV data can be addressed by aligning the offset of
the corresponding signal in each audio file.

Among the acquired 3D movements of 41 markers, this pa-
per only used the information of 8 markers around the lip. The
following 5 steps were used to obtain speaker-independent vi-
sual features: (1) remove the global head motions from the ac-
quired facial motion data of 41 markers using the rotation and
translation matrices [14], which were estimated based on the
fixed distances among 4 headband markers during recording;
(2) extract the motion data of lip points li,t, where li,t is a 24-
dimensional (8*3=24) vector of i-th utterance at time instance
t; (3) remove the static lip using l̂i,t = li,t − li,static, where
the static lip li,static is simply selected from the first frame of
the i-th utterance; (4) apply the speaker-level normalization of
zero mean and unit variance to l̂i,t; (5) apply principal compo-
nent analysis (PCA) to those results obtained from step (4), and
reduce the dimensionality from 24 to 16.

3. Audio-to-visual feature learning
There are two categories of audio-to-visual feature learning
or inversion techniques: HMM based [15, 16, 17] inversion
approaches and neural network based non-linear mapping ap-
proaches [18, 19, 20]. Since the AV relationship is highly non-
linear [21], neural network based approaches are preferred to
be used for the AV inversion modeling. Moreover, in order
to incorporate long-range temporal correlation present in AV
data, recurrent neural network (RNN) based inversion model-
s can be used. Among these, long short-term memory neural
networks (LSTMs) [22], which is a special kind of RNNs, has
been successfully applied in acoustic-to-articulatory inversion
tasks [23, 24]. Inspired by its success, LSTM based methods
are used for learning visual features from acoustic features.

Figure 1: Inversion LSTM: audio-to-visual feature learning.

An example of LSTM based audio-to-visual inversion ap-
proaches used in this paper is shown in Figure 1. The inputs
were a context window of 11 frames constructed at every other
time instance and the targets were 16-dimensional visual fea-
tures obtained in Section 2. As we know, if all layers in Fig-
ure 1 are LSTM layers, long inputs would lead to considerably
longer training time and larger latency during testing. To handle
such efficiency issue, we used the inversion LSTM architecture
containing 3 fully connected feedforward layers with 1024 n-
odes each and sigmoid activation followed by 2 LSTM layers

1http://www.naturalpoint.com/optitrack/

with 128 cells each. This is found in practice to give a good
trade-off between performance and inference time. The fully
connected feedforward layers were supposed to extract more
representative acoustic features associated with visual features.
Each LSTM layer contained a recurrent projection layer with 64
units for the dimensionality reduction [25], which was used to
capture the dynamic long-term dependencies between acoustic
and visual features.

The training criterion of inversion LSTM models is MSE
based regression error. RBM based pretraining [26] was used to
initialize the weights of feedforward layers. And then each LST-
M layer was trained by an incremental layer-wise method [27].
When adding a new LSTM layer, the previous output weights
were discarded and new random output weights were used to
connect the new top layer. Note that the difference from the
common layer-wise pretraining method is that only the added
layer was trained at a time. Finally, all network weights were
fine-tuned.

4. Semi-supervised cross-domain visual
feature learning

Figure 2: Multi-level domain adaptive deep network (MLAN): t-
wo domain adaptation directions. (a) OOD→ in-domain (“3D
AV” to “GALE” in this paper): generating in-domain MLAN
features for AV data’s audio to construct inversion model direct-
ly transforming GALE audio into visual features. (b) in-domain
→OOD (“GALE” to “3D AV” in this paper): generating OOD
MLAN features for in-domain GALE audio data to use OOD AV
data trained inversion model.

In contrast to the out of domain (OOD) AV data, the real-
world audio-only data can be considered as in-domain data. As
discussed before, considering the inversion model’s nature as
domain-specific, the domain mismatch between the AV data’s
audio data and audio-only data in real life needs to be appro-
priately handled by multi-level domain adaptive deep network
(MLAN) before the visual feature inversion can be reliably per-
formed. A MLAN can be seen as stacked deep neural networks
(DNNs), which is firstly proposed for the cross-domain adapta-
tion [28, 29] from OOD to in-domain. Moreover, an “in-domain
to OOD” MLAN was also investigated in this paper to assess the
effect of acoustic perturbation on the quality of generated visu-
al features, assuming the cleaner the acoustic condition, more
reliable the visual features. Take the MLAN in Figure 2 with
case (a) as an example: the bottleneck (BN) features derived
from the first DNN are supposed to contain the OOD informa-
tion; using such BN features as the inputs of the second DNN
enables it to cope with OOD information; moreover, the second
DNN is supposed to have the ability to extract the most discrim-
inative elements associated with in-domain from OOD informa-
tion, since it is trained on the in-domain audio data. Thus, the
MLAN features derived from the BN layer of the second DNN
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are domain-specific features associated with the target domain.
In this paper, the 3D AV data described in Section 2 was used
as OOD data, while the DARPA GALE broadcast speech audio
was used as in-domain data. Each DNN in a MLAN contained
6 fully connected feedforward layers with 2048 nodes each fol-
lowed by one BN layer with 39 nodes, and each layer contained
sigmoid activation function. The outputs of each DNN were
118 mono phones.

Taking the advantages of MLANs and LSTM based audio-
to-visual feature inversion techniques, a semi-supervised cross-
domain visual feature learning approach is proposed in this pa-
per. The inversion cross-domain LSTM (CDLSTM) models
based on such approach (see Figure 3) trained on limited OOD
AV data are designed for learning reliable visual features from
the real-world audio-only data in both AVSR system training
and evaluation. As shown in Figure 3, the standard acoustic
features are concatenated with the derived MLAN features in
a tandem fashion to form the new features. The advantages of
using such domain-specific tandem features as inversion LSTM
inputs in Figure 3 are: on the one hand, the complex relation-
ship between audio and visual data can be maintained in the o-
riginal standard acoustic features; on the other hand, the domain
mismatch in acoustic space can be addressed by the MLAN fea-
tures, which are associated with the same domain. Besides, this
paper will explore the effect of using different standard acous-
tic features (PLP/MFCC/FBANK) in the inversion models on
the final AVSR system performance, which will be discussed in
details in the experiments.

Figure 3: Inversion cross-domain LSTM (CDLSTM): semi-
supervised cross-domain visual feature learning.

5. AVSR System Architecture

Figure 4: AVSR system architecture using inversion CDLSTM
models on real-world audio-only data (GALE broadcast speech
audio data in this paper).

Figure 4 shows the AVSR system architecture using the pro-
posed semi-supervised cross-domain visual feature learning ap-

proach described in Section 4 on the audio-only data in real life.
Since deep learning frameworks have shown impressive perfor-
mance in AVSR tasks [7, 8], deep learning based audio-visual
integration methods are used in this paper. As shown in Fig-
ure 4, we use separated layers in the deep learning based AVSR
modeling, which are used to represent the AV inputs into the
same feature space, which becomes easier for the top layers to
learn higher-order correlations between audio and visual data.
Especially, we explored two different types of AVSR modeling
for the GALE broadcast speech transcription task.
Deep neural network (DNN) based AVSR modeling: it con-
tained 2 separated fully connected feedforward layers for audio
(2048 nodes in each hidden layer) and visual inputs (512 nodes
in each hidden layer) respectively, followed by 4 fully connect-
ed feedforward layers with 2048 nodes each.
Deep convolutional neural network (CNN) based AVSR
modeling: it contained 2 separated convolutional layers for au-
dio and visual inputs respectively, followed by 4 fully connect-
ed feedforward layers with 2048 nodes each. For both audio
and visual parts, the max pooling strategy was used in the first
convolutional layers (256 hidden units, filter size of 6 and filter
shift of 1), while no pooling techniques were used in the second
convolutional layers (64 hidden units, filter size of 4 and filter
shift of 1). Full weight sharing (FWS) approach [30] and 1-D
feature maps along the time axis were used.

For all DNN/CNN based AVSR systems, sigmoid functions
were used in each non-convolutional layer. The acoustic inputs
were 11 successive frames of 72-dimensional FBANK features
(static, ∆ and ∆∆) and the visual inputs were 11 successive
frames of 48-dimensional visual features (static, ∆ and ∆∆).
Discriminative pretraining followed by global fine-tuning using
the minimum cross-entropy criterion was also performed.

One key issue associated with the proposed AVSR mod-
eling approach using semi-supervised cross-domain visual fea-
ture learning and many other unsupervised learning techniques
in general, is the reliability and appropriate selection of the gen-
erated data. In this paper, we assume all generated visual fea-
tures from audio-only data will be used for subsequent AVS-
R training and evaluation. The data selection issue is beyond
the scope of this paper and will be investigated in our future
research. As shown in Figure 4, using the inversion CDLST-
M models, the proposed DNN/CNN based AVSR systems use
audio-only data as inputs. The only part of the AVSR system-
s requiring AV data is the inversion model training stage. The
proposed approach allows a wider use of AVSR systems in the
real world, since only audio data is required at test time.

6. Experiments
For the DARPA GALE Mandarin Chinese broadcast speech
recognition task, we used GALE Phase 2 Chinese Broadcast
Conversation Speech (LDC2013S04), GALE Phase 2 Chinese
Broadcast News Speech (LDC2013S08), GALE Phase 3 Chi-
nese Broadcast Conversation Speech Part 1 (LDC2014S09) and
the associated transcripts (LDC2013T08, LDC2013T20, LD-
C2014T28), totally about 200 hours with 29 shows and 506
episodes. Among these, the development set was selected from
10% latest episodes of each show, while the rest speech were
used as the training set. The test set was formed by the combi-
nation of the 07 development set and 07 evaluation set, totally
4.7 hours with 26 shows, 157 episodes, and 3170 utterances.
This test set was divided into three subsets: the official TV sub-
set, which contained standard Mandarin speech; the NTD TV
subset, which was the data did not appear in the training set; the
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Phoenix TV subset, which consisted of the conversational and
spontaneous speech. ANN-HMM hybrid framework [31] was
used in the decoding. A GMM-HMM baseline with 9205 tied
states was obtained using HTK [32] and used as the bootstrap
model, while all neural networks were then trained and eval-
uated using Kaldi toolkit [33]. The system performance was
evaluated by character error rate (CER).

The supervised labels were 9205 triphone states, which
were fixed by the realignment using a well-trained DNN using
audio-only data. The baseline DNN ASR system contained 6
fully connected feedforward layers with 2048 nodes each. The
baseline CNN ASR system contained 2 convolutional layers fol-
lowed by 4 fully connected feedforward layers, and the convo-
lutional layer configurations are the same as those of the au-
dio part in CNN based AVSR systems described in Section 5.
Besides, two more competitive DNN and CNN ASR baselines
using stacked BN features [34] (2nd and 6th line in Table 2)
were also obtained. The stacked DNN/CNN ASR baseline con-
tained two DNNs/CNNs, where the first DNN/CNN containing
an additional BN layer with 39-dimensional nodes before the
output layer was used to extract BN features and the second
DNN/CNN with such BN features in a tandem fashion as input-
s was used for computing the final state posterior probabilities.

Table 1: Average CER performance of the proposed DNN/CNN
based AVSR systems using various acoustic features as inver-
sion CDLSTM model inputs.

Systems Inversion CDLSTM model CER (%)Features MLAN target domain

DNN
AVSR

PLP 3DAV (fig. 2b) 11.85
GALE (fig. 2a) 11.79

MFCC 3DAV (fig. 2b) 11.54
GALE (fig. 2a) 11.50

FBANK 3DAV (fig. 2b) 11.51
GALE (fig. 2a) 11.40

CNN
AVSR

PLP 3DAV (fig. 2b) 11.56
GALE (fig. 2a) 11.33

MFCC 3DAV (fig. 2b) 11.30
GALE (fig. 2a) 11.23

FBANK 3DAV (fig. 2b) 11.16
GALE (fig. 2a) 11.10

Table 1 can be partitioned into two parts. The first and sec-
ond parts show the average CER performance of various pro-
posed DNN and CNN based AVSR systems respectively. Com-
pared with those results of using PLP and MFCC features as
inversion CDLSTM model inputs, both DNN and CNN based
AVSR systems using FBANK features have relative low CER
performance. When the AVSR modeling types and the acous-
tic features used in inversion CDLSTM models were fixed in
Table 1, small CER reductions were obtained from the AVSR
systems using MLAN features associated with GALE domain
over those associated with 3DAV domain. Besides, using the
proposed semi-supervised visual feature learning techniques, C-
NN based AVSR systems outperformed the comparable DNN
based AVSR systems. For example, an average CER reduction
of 0.30% absolute (2.6% relative) was obtained from the CNN
based AVSR system in the last line of the second part of Ta-
ble 1 over the corresponding DNN based AVSR system in the
last line of the first part of Table 1.

In order to better evaluate the proposed semi-supervised
cross-domain visual feature learning approach in AVSR mod-
eling, Table 2 shows detailed CER performance of the baseline
DNN/CNN ASR systems with/without stacked BN features and

Table 2: Details of CER performance of the baseline DNN/CNN
ASR systems, DNN/CNN based AVSR systems using inversion
LSTM and inversion CDLSTM with FBANK feature as inputs.
(The MLAN in Figure 2a was used in inversion CDLSTM).

Systems BN
feats.

AV inversion
model

CER (%)
Offi. NTD. PHNX. Avg.

DNN
ASR

× × 10.65 10.63 16.95 12.77
a × 9.99 10.15 16.16 12.08

DNN
AVSR a+v LSTM(fig. 1) 11.00 11.07 17.60 13.34

CDLSTM(fig. 3) 9.65 9.56 15.11 11.40
CNN
ASR

× × 9.93 9.94 15.83 11.91
a × 9.83 10.08 15.01 11.60

CNN
AVSR a+v LSTM(fig. 1) 10.12 10.14 16.00 12.14

CDLSTM(fig. 3) 9.35 9.49 14.51 11.10

DNN/CNN based AVSR systems using inversion LSTM and in-
version CDLSTM with FBANK feature as inputs. Compared
with those results of the ASR baseline in the first line of the
first/second part of Table 2, no CER performance improvemen-
t was obtained from the DNN/CNN based AVSR systems di-
rectly using visual feature learning approaches without MLAN
domain adaptation techniques. For example, an average CER
increase of 0.57% absolute was obtained from the DNN AVSR
system using inversion LSTM model in the 3rd line of Table 2
over the DNN ASR baseline in the first line of Table 2. As ex-
pected, use semi-supervised cross-domain visual feature learn-
ing approach in AVSR modeling gave the reductions in CER.
For example, the CNN AVSR system using inversion CDLST-
M with the MLAN adaptation to GALE domain (highlighted
in bold in Table 2) outperformed the comparable CNN ASR
baseline by an average CER reduction of 6.8% relative, and it
also outperformed the more complex CNN ASR baseline using
stacked BN features by an average CER reduction of 4.3% rela-
tive. Specially, on the most difficult Phoenix TV subset, a CER
reduction of 1.32% absolute (8.34% relative) was obtained over
the CNN ASR baseline.

7. Conclusions
In this paper, a semi-supervised cross-domain visual feature
learning approach was proposed for constructing audio-visual
speech recognition (AVSR) systems on a DARPA GALE Man-
darin broadcast transcription task. Compared with the con-
ventional AVSR systems, the proposed AVSR systems can be
used when only audio information is available in many prac-
tical applications. Experimental results suggest that, using the
proposed cross-domain audio-to-visual feature generation tech-
niques in both system training and testing, a CNN based AVSR
system outperformed the baseline audio only CNN ASR system
by an average CER reduction of 6.8% relative. In particular, on
the most difficult Phoenix TV subset, a CER reduction of 1.32%
absolute (8.34% relative) was obtained. Future work will focus
on the data selection of generated visual features.
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