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Abstract
Dysarthria is a neuro-motor disorder resulting from the dis-

ruption of normal activity in speech production leading to slow,
slurred and imprecise (low intelligible) speech. Automatic clas-
sification of dysarthria from speech can be used as a potential
clinical tool in medical treatment. This paper examines the ef-
fectiveness of glottal source parameters in dysarthric speech
classification from three categories of speech signals, namely
non-words, words and sentences. In addition to the glottal
parameters, two sets of acoustic parameters extracted by the
openSMILE toolkit are used as baseline features. A dysarthric
speech classification system is proposed by training support
vector machines (SVMs) using features extracted from speech
utterances and their labels indicating dysarthria/healthy. Clas-
sification accuracy results indicate that the glottal parameters
contain discriminating information required for the identifica-
tion of dysarthria. Additionally, the complementary nature of
the glottal parameters is demonstrated when these parameters,
in combination with the openSMILE-based acoustic features,
result in improved classification accuracy. Analysis of classi-
fication accuracies of the glottal and openSMILE features for
non-words, words and sentences is carried out. Results indicate
that in terms of classification accuracy the word level is best
suited in identifying the presence of dysarthria.
Index Terms: Dysarthric speech, glottal source, glottal param-
eters, openSMILE, support vector machines

1. Introduction
Dysarthria is a neuro-motor disorder resulting from neurolog-
ical damage of motor component of speech production [1].
Dysarthria is generally a result of either a neurological injury
(i.e., cerebral palsy, brain tumor, brain injury, stroke) or a symp-
tom of a neurodegenerative disease (i.e., Parkinsons’s disease,
Amyotrophic lateral sclerosis, Huntington’s disease). Speech
disorders due to dysarthria are associated with reduced vocal
tract volume and tongue flexibility, atypical speech prosody, im-
precise articulation and variable speech rate, factors that all lead
to poor speech intelligibility [2]. As dysarthric speech is distin-
guishable from healthy speech, the assessment of speech can
be carried out for the identification of dysarthria. The speech
assessment can be conducted by speech-language pathologists
through intelligibility tests to judge the presence of dysarthria
[3]. Subjective intelligibility tests are costly, laborious, and fre-
quently prone to intrinsic biases of pathologists due to their fa-
miliarity with patients and their speech disorders [4][5]. This
motivates to design an objective assessment method that can
distinguish dysarthric voices from healthy speech.

For objective assessment, a dysarthric speech classifica-
tion system is used which is basically a data-driven model
trained on a dysarthric speech database. The data-driven model
establishes a mapping between speech features and labels

(dysarthric/healthy) determined by speech-language patholo-
gists. In order to develop an efficient dysarthric speech clas-
sification system, the existing works mainly focus on extrac-
tion of acoustic features capable of capturing wide variabili-
ties of sources and patterns in pathological speech [6][7][8].
Previous works have explored a range of features including
spectral features (e.g., Mel-frequency cepstral coefficients, for-
mants), prosody features (e.g., fundamental frequency, pitch
contour, phone duration, RMS energy), voice quality features
(e.g., jitter, shimmer, harmonic to noise ratio), perceptual fea-
tures and phonological features [7][8] [9][10][11]. In addition
to these widely explored acoustic features, few studies have uti-
lized glottal parameters for detecting the presence of dysarthria
[12]. In [12], glottal parameters are utilized in combination
with acoustic parameters for developing cross-database mod-
els (training on one database and testing on another database)
for identification of dysarthria. Existing works use glottal flow
waveforms which are estimated using known glottal inverse fil-
tering (GIF) methods such as Iterative Adaptive Inverse Filter-
ing (IAIF) [13] and Rank-Based Glottal Quality Assessment
(RBGQA) [14]. However, recent efficient GIF methods, such
as Quasi-Closed Phase Analysis (QCP) [15], have not been ex-
plored in objective assessment of dysarthric speech. In addi-
tion, most of the previous studies on dysarthric speech classi-
fication have addressed a single type of speech signal such as
either modulated vowels [16], words [7] or sentences [8]. To
our knowledge, there are no previous comprehensive investiga-
tions to study the effectiveness of a set of proposed features and
classifiers on different categories of speech signals, for exam-
ple, vowels, words and sentences.

The main goal of this research work is to explore glottal
parameters, extracted from the voice source signal estimated
using the recently proposed QCP method [15], for dysarthric
speech classification in three different speech signal categories,
namely, non-words, words and sentences. Two sets of acous-
tic features extracted with the widely explored openSMILE
toolkit [6] are used as baseline features. Support vector ma-
chine (SVM) classifier is trained using features extracted from
each of the speech utterance and its corresponding label indicat-
ing dysarthria/healthy. This work explores the effectiveness of
the glottal features, when used individually and combined with
the baseline openSMILE features, in classification of dysarthric
speech. Another important contribution of the current work
which has not been explored before is the analysis of classifica-
tion performance on different categories of speech signals (non-
words, words and sentences) under a common framework. The
paper is organized as follows. Description about the proposed
dysarthric speech classification system is given in Section 2.
The details about the speech database, experimental setup and
results are provided in Section 3. The summary of the present
work and discussion are given in Section 4.
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2. Proposed method
In order to classify dysarthric voices from healthy speech, a
new dysarthric speech classification system is proposed. The
training phase of the proposed system is shown in Figure 1.
First, a multi-speaker dysarthric speech database is considered
for training the classifier (described in Section 3.1). From every
speech utterance of the database, time-domain and frequency-
domain glottal parameters are extracted. In order to extract pa-
rameters, glottal flow waveform is estimated from the speech
utterance by using the QCP method [15] which was found to
be the best performing GIF method in comparison to existing
algorithms [13][17][18] in [15] (details are provided in Section
2.1). Two sets of acoustic features are also extracted from every
speech utterance using openSMILE [6] (described in Section
2.2) which is a widely used toolkit in paralinguistic speech pro-
cessing tasks. Generally, sizes of acoustic and glottal feature
sets are large. To avoid the risk of over-fitting, the feature set
size is reduced by using the sequential forward feature selec-
tion (SFFS) algorithm [19]. The SFFS algorithm selects a sub-
set of features from the feature set that results in the best clas-
sification accuracy. Starting from an empty feature set, SFFS
creates candidate feature subsets by sequentially adding each
of the features and each candidate feature subset is evaluated
by computing the classification accuracy with 10-fold cross-
validation. Using the features extracted from every speech ut-
terance as input and corresponding dysarthric/healthy labels as
output, a classifier is trained. Separate classifiers are trained
using reduced and non-reduced feature sets for openSMILE,
glottal features and their combination. In this work, SVMs
are used as classifiers. SVMs are widely used in pathological
speech classification and they are validated with consistent per-
formance even for small amount of speech data in contrast to
other techniques such as deep neural nets which require large
amount data for proper training [8][20].

After completing the training, the SVM classifiers can be
used to identify the presence of dysarthria in the input speech
utterance. The same set of speech features which were used
during training are extracted from the speech utterance, and the
extracted features are fed to the SVM classifier, which outputs
the dysarthric/healthy labels.

2.1. Glottal parameters extraction

In dysarthria, as the motor component of speech production is
affected, vibration of the vocal folds will change compared to
healthy speech. The difference in vocal fold vibration between
dysarthric and healthy speech production cannot be character-
ized completely by the rate of vibration (i.e., pitch information).
Instead, the mode of vibration of the vocal folds will be affected
also. Therefore, the waveform of the acoustic speech excitation
generated by the vocal folds, the glottal flow, may have useful
discriminating information for dysarthric speech classification.
In order to parameterize the glottal source, the flow waveform
must be estimated first with GIF from the speech signal. In this
work, we use QCP [15] as the GIF method in the estimation of
the glottal flow.

2.1.1. QCP

QCP [15] is one of the recently proposed GIF methods to esti-
mate the glottal source from speech. The QCP method is based
on the principles of the closed phase analysis (CP) [17] which
estimates the vocal tract response using the covariance method
of linear prediction from few speech samples located in closed

Figure 1: Training phase of the proposed dysarthric speech
classification system.

phase of the glottal cycle. In contrast to the CP method, QCP
creates a specific temporal weighting function, called the At-
tenuated Main Excitation (AME) function, using glottal closure
instants (GCIs) estimated from speech. The AME function is
used to attenuate the contribution of the (quasi-) open phase in
the computation of the Weighted Linear Prediction (WLP) coef-
ficients, which results in good estimates of the vocal tract trans-
fer function. Evaluation results in [15] show that the accuracy of
QCP is better than that of CP [17], IAIF [13] and complex cep-
stral decomposition (CCD) [18]. Hence, in this work, the glottal
flow waveform is estimated using the QCP method. From the
estimated glottal flow waveforms, time- and frequency-domain
glottal parameters are extracted.

2.1.2. Time- and frequency-domain glottal parameters

The glottal flow computed by QCP is parameterized with a glot-
tal parameter set consisting of 12 time- and frequency-domain
parameters which characterize various aspects of the glottal
flow waveform [21][22]. These parameters are extracted us-
ing APARAT Toolbox [23]. The time- and frequency-domain
glottal parameters are listed in Table 1. H1H2 and HRF are
obtained in the dB scale, and other parameters are obtained
in a linear scale. The glottal parameters are computed in 30-
ms frames. H12 and HRF are computed pitch-asynchronously
once per frame whereas the rest of the parameters are com-
puted pitch-synchronously once per glottal cycle and then aver-
aged over the frame. The glottal parameters computed from all
voiced frames of the input speech signal form finally the glot-
tal parameter vector of the utterance. The following 8 statisti-
cal measures are computed from the glottal parameter vector as
well as from its delta vector: mean, median, min, max, standard
deviation, range, skewness, and kurtosis. This results in (12 +
12) × 8 = 192 parameters representing the glottal feature set.

2.2. Acoustic parameters extraction using openSMILE

Acoustic parameters are extracted from speech using openS-
MILE, a freely available feature extraction toolkit [6]. The
openSMILE features have been used as baselines for differ-

3404



Table 1: Time- and frequency-domain glottal parameters. For
more details, see [23]

Time-domain parameters
OQ1 Open quotient, computed from primary glottal opening
OQ2 Open quotient, computed from secondary glottal opening
NAQ Normalized amplitude quotient
AQ Amplitude quotient
ClQ Closing quotient
OQa Open quotient, derived from the LF model
QOQ Quasi-open quotient
SQ1 Speed quotient, computed from primary glottal opening
SQ2 Speed quotient, computed from secondary glottal opening

Frequency-domain parameters
H12 Difference between first two glottal harmonics
PSP Parabolic spectrum parameter
HRF Harmonic richness factor

ent paralinguistic challenges from INTERSPEECH 2009 [24].
Some examples of paralinguistic challenges are recognition of
emotion, speaker traits and states, and speech pathology. The
acoustic features extracted by openSMILE mainly represent
spectrum, prosody and voice quality. In this work, two sets
of acoustic features defined in the openSMILE toolkit are used
for dysarthric speech classification. The first set (referred in
this work as openSMILE-1) is INTERSPEECH 2009 Emotion
Challenge [24] feature set consisting of 384 features. This fea-
ture set consists of 16 acoustic features extracted from every
frame (described in Table 2). The set of 16 acoustic features
along with their derivatives obtained from all frames of a speech
utterance forms the acoustic feature vector. 12 statistical func-
tionals (shown in Table 2) are computed from the acoustic fea-
ture vector of the utterance to obtain (16 + 16) × 12 = 384
features representing the openSMILE-1 feature set.

The second set (referred in this work as openSMILE-2) is
the large openSMILE emotion feature set consisting of 6552
features. This is the largest feature set in terms of the num-
ber of features in the openSMILE toolkit. The largest feature
set is chosen to involve as much acoustic information as pos-
sible which may be helpful in dysarthric speech classification.
A set of 56 acoustic features (given in Table 2) are extracted
from every frame. 56 acoustic features along with their first and
second order derivatives form the frame-level acoustic features.
As in openSMILE-1, statistical functionals are applied on the
acoustic feature vectors which are extracted from all frames of
the speech utterance. Instead of 12, 39 statistical functionals
(shown in Table 2) are applied to obtain (56 + 56 + 56) × 39 =
6552 features representing the openSMILE-2 feature set.

3. Experiments
The experiments conducted in this study evaluate the effective-
ness of the glottal parameters in dysarthric speech classification.
The classification accuracies of the combination of the glottal
and openSMILE features are analyzed separately on non-words,
words and sentences.

3.1. TORGO database

To develop the dysarthric speech classification system, the
TORGO database [25] was utilized. This database contains
speech recordings from seven patients (three females and four
males), diagnosed with cerebral palsy or amyotrophic lateral
sclerosis and speech recordings from seven healthy control

speakers (three females and four males). The age range of
patients is from 16 years to 50 years. The database includes
speech signals in three categories, namely non-words, words
and sentences. Non-words consist of 5-10 repetitions of /iy-
p-ah/, /ah-p-iy/, and /p-ah-t-ah-k-ah/ and high- and low-
pitched vowels maintained over 5 s (e.g., “Say ‘eee’ in a high
pitch for 5 s”). Text prompts used to record short words in-
clude 50 words from the word intelligibility section of the Fren-
chay Dysarthria Assessment [26] and 360 words from the word
intelligibility section of the Yorkston-Beukelman Assessment
of Intelligibility of Dysarthric Speech [27]. Sentences com-
prise three pre-selected phoneme-rich sentences sets: Grand-
father passage from the Nemours database [28], 162 sentences
from sentence intelligibility section of the Yorkston-Beukelman
Assessment of Intelligibility of Dysarthric Speech [27], 460
sentences from the MOCHA database [29] and spontaneously
elicited descriptive texts.

In this study, utterances in all three speech signal categories
of TORGO, recorded by an array microphone with 16-kHz sam-
pling, are used. In each of the three categories, speech samples
of seven patients (three females and four males) with dysarthria
and seven healthy speakers (three females and four males) are
considered. For speech signals at the level of words and sen-
tences, 80 utterances from each speaker are used (except for two
dysarthric speakers at sentence-level, only 23 and 28 utterances
are used due to lack of availability of recordings) and for non-
words, 8-9 utterances from each speaker (which are available in
the database) are used in dysarthric speech classification.

3.2. Experimental setup

The speech data is processed in 30-ms frames at 15-ms in-
tervals in the dysarthric speech classification system. Using
openSMILE, two sets of acoustic features (openSMILE-1 and
openSMILE-2) are extracted from every speech utterance of the
TORGO database. Every frame of speech utterance is inverse
filtered using QCP to obtain the glottal flow estimate. From
glottal flow waveforms of every utterance, time- and frequency-
domain glottal parameters are extracted using the APARAT
toolbox. Both acoustic and glottal features are individually nor-
malized by subtracting the global mean and dividing by the
global standard deviation. The sizes of the feature sets are re-
duced by the SFFS algorithm. The process of feature extraction
and reduction is carried out separately for the speech utterances
of non-words, words and sentences. Separate set of SVM clas-
sifiers are developed for each category using acoustic and glot-
tal feature sets both individually and combined. Also, SVM
classifiers are developed for both the non-reduced and reduced
feature sets. The SVM classifiers are trained using Gaussian,
radial basis function kernel. The optimal values of kernel pa-
rameter γ and penalty parameter C are chosen based on grid
search with C and γ varying from 10−3 to 103 in multiples
of 10. The pair (C,γ) is selected which resulted in the high-
est classification accuracy on test data. A leave-one-subject-out
(LOSO) cross validation strategy is used to determine the clas-
sification accuracy. In this strategy, one speaker is used at every
fold for validation and all other speakers are used for training.
The cross-validation process is then repeated with each of the
speaker used exactly once as the validation data. The classi-
fication accuracies obtained at all folds are averaged to obtain
the final accuracy. The classification accuracy (also called the
unweighted average recall) is computed as the ratio of number
of correctly classified speech utterances to the total number of
speech utterances.
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Table 2: Two openSMILE feature sets. For more details, see [6]

Feature sets Acoustic features Statistical functionals
openSMILE-1 RMS-energy, MFCCs (12), zero-crossing rate, min (or max) value and its relative position, median, range, standard

pitch, voicing probability deviation, skewness, kurtosis, 2 linear regression coeff. and quadratic error
openSMILE-2 log-energy, MFCCs (13), Mel-spectrum (26), min (or max) value and its relative position, median, range, standard

zero-crossing rate, pitch, jitter, shimmer, deviation, skewness, kurtosis, 2 linear regression coeff., linear and
voicing probability, spectral flux, roll-off quadratic errors, 3 quartiles, 2 percentiles (95% & 98%), 3 inter-quartile
points, spectral centroid, position of spectral errors, number of peaks, mean of peaks, mean distance between peaks,
maximum and minimum arithmetic, geometric and quadratic means

Table 3: Classification accuracies obtained for each of three
speech signal categories using both reduced and non-reduced
feature sets.

Classification Accuracy
Feature set Without Feature With Feature

(Non-words) selection (%) selection (%)
OpenSMILE-1 60.11 84.46
OpenSMILE-2 70.07 89.23

Glottal 69.34 78.16
OpenSMILE-1 + glottal 69.53 88.41
OpenSMILE-2 + glottal 67.75 93.52

Feature set Without Feature With Feature
(Words) selection (%) selection (%)

OpenSMILE-1 78.84 88.39
OpenSMILE-2 80.36 93.39

Glottal 68.30 72.77
OpenSMILE-1 + glottal 77.14 92.77
OpenSMILE-2 + glottal 82.32 94.29

Feature set Without Feature With Feature
(Sentences) selection (%) selection (%)

OpenSMILE-1 69.39 87.08
OpenSMILE-2 76.77 90.87

Glottal 61.08 71.86
OpenSMILE-1 + glottal 64.31 87.56
OpenSMILE-2 + glottal 74.63 91.38

3.3. Results

Table 3 shows the average classification accuracies of leave-
one-subject-out cross validation for non-words, words and sen-
tences using both the reduced and non-reduced feature sets. In
comparing the classification accuracies for all types of feature
sets in each of the three categories, it can be observed that the
usage of reduced feature sets results in better accuracy com-
pared to the non-reduced feature sets. From the table, it can
be observed that with more than 80 % classification accuracies,
two sets of openSMILE based features have better classifica-
tion accuracies than glottal parameters after feature selection.
The classification accuracies of the glottal parameters is more
than 70 % after feature selection. This indicates that the glottal
parameters contain discriminative information important for the
classification of dysarthric speech. Most importantly, by com-
bining the glottal parameters with the openSMILE features, the
classification accuracies improve in all three speech signal cat-
egories after feature selection. This shows that the glottal pa-
rameters contain complementary information which results in
the improvement of accuracies when combined with the widely
used openSMILE features.

On comparing the classification accuracies in the three
speech signal categories, word-level signals show the highest
score for both of the openSMILE feature sets and for both of the
combined feature sets. Word-level utterances are short speech

segments which provide useful segmental information related
to speech pathology and feature extraction can be performed
on word-level utterances with less complexity. Hence, it can
be concluded that word-level speech signals are best suited for
performing dysarthric speech classification. However, classi-
fication accuracies obtained using the glottal parameters alone
were highest for non-words. This suggests that even though
non-words do not carry any linguistically important informa-
tion, speech production is mostly voiced in this category and
therefore glottal features contain relevant information related
to speech disorder classification. Sentence-level signals have
slightly better accuracies compared to non-words for two sets
of the openSMILE features. The amount of improvement in
accuracy by adding the glottal parameters to the openSMILE
features is very small (about 0.5 %) for sentences compared to
words and non-words. The feature characteristics and robust-
ness that are observed for shorter segments (e.g., words) might
not be consistent with sentence-level speech data due to high
variability and complexity of sentence-level speech production.

4. Conclusions
This paper proposes a dysarthric speech classification system
using glottal features and evaluates its performance separately
on non-words, words and sentences. Two openSMILE-based
feature sets are used as baselines. SVM classifiers are trained to
predict dysarthria/healthy labels using features extracted from
speech. Experiments show that the glottal parameters resulted
in fairly good classification accuracies (around 70%) in all three
speech signal categories. Results also show that combining the
glottal parameters with the openSMILE features results in im-
proved classification accuracies. Among the three speech signal
categories, word-level signals leads to the highest classification
accuracies for the two openSMILE feature sets and for the com-
bination of the openSMILE and glottal features.

To the best of our knowledge, the current study is the
first investigation in which effectiveness of glottal parameters
in dysarthric speech classification is compared between non-
words, words and sentences. Possible future works are as fol-
lows. Dysarthric speech classification using glottal parameters
can be explored using other databases such as the Universal ac-
cess speech database [30]. In addition to the standard time- and
frequency-domain glottal parameters, other methods of parame-
terization can be explored. The effectiveness of glottal parame-
ters in classification of dysarthria can be investigated under dif-
ferent realistic scenarios such as presence of environment noise,
band-pass filtering and speech coding.
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