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Abstract
Neural network language model (NN LM), such as long short
term memory (LSTM) LM, has been increasingly popular due
to its promising performance. However, the model size of an
uncompressed NN LM is still too large to be used in embedded
or portable devices. The dominant part of memory consumption
of NN LM is the word embedding matrix. Directly compress-
ing the word embedding matrix usually leads to performance
degradation. In this paper, a product quantization based struc-
tured embedding approach is proposed to significantly reduce
memory consumption of word embeddings without hurting LM
performance. Here, each word embedding vector is cut into
partial embedding vectors which are then quantized separately.
Word embedding matrix can then be represented by an index
vector and a code-book tensor of the quantized partial embed-
ding vectors. Experiments show that the proposed approach can
achieve 10 to 20 times embedding parameter reduction rate with
negligible performance loss.
Index Terms: Language Model, word embedding, vector quan-
tization, product quantization, model compression

1. Introduction
In automatic speech recognition (ASR) , language model (LM)
is the core component that incorporates syntactic and semantic
constraints of a given language. Although the conventional N-
gram back-off language model with smoothing has been widely
used in ASR, it suffers from limited context length and the huge
memory requirements for large vocabulary. Recently, neural
network based language model (NN LM) [1] has attracted great
interest due to its effective encoding of word context history and
memory efficiency. In neural network based language models,
both the word context and the target word are projected into a
continuous space. The projection, represented by the transfor-
mation matrix, is learned during training. The projected con-
tinuous word vectors are also referred to as word embeddings.
With the effective word context encoding, feed-forward neu-
ral network language model (FNNLM) achieves better PPL and
word error rate (WER) for ASR. Following FNNLM, recurrent
neural network (RNN) and long-short term memory [2] (LSTM)
LM are proposed to handle long context history in sentences.
They have achieved state-of-the-art results on various datasets
[3, 4, 5, 6].
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NN LMs, including FNNLM, RNNLM and other variants,
share the same embedding map from words to continuous vec-
tor space. Such approach requires a large number of parame-
ters for word embeddings. This is unfavored in many scenarios.
First, memory consumption becomes a major concern when NN
LM are deployed in resource restricted systems [7]. Second, as
each word is assigned a unique embedding vector, NN LM are
unlikely to learn meaningful embeddings for infrequent words
due to data sparsity [8]. Notably, [9] incorporates sub-word
features into word embeddings in RNNLM and outperforms
straightforward word embeddings, but the memory cost is in-
creased for additional neural network structures.

Model compression for NN LM has attracted much research
interest in recent years. There are two basic components to com-
press in NN LM, the recurrent layer and the word embeddings.
In most cases, the majority of parameters in NN LM lies in word
embeddings. [10] explores the independence of neurons in the
recurrent layers of LSTM and achieves state-of-the-art results
while obtaining 2.5× compression rate in LSTM layer. Nei-
ther input nor output embeddings is studied in the paper, so the
memory cost of the whole model remains large. LightRNN [11]
addresses the problem by decomposing word embeddings into
row embeddings and column embeddings. The embeddings are
shared among fixed number of words, leading to huge memory
reduction. However, significant performance degradation may
be observed for relatively small vocabulary. In [8], the embed-
dings of infrequent words are represented with the embeddings
of frequent words by a sparse linear combination. It solves both
of the problems above, but the memory reduction rate is in-
significant under tiny size vocabulary (20% when |V | = 10K).
In addition, the architecture is complicated because it invokes
an additional layer in the output layer.

In this paper, an effective product quantization based struc-
tured word embedding framework [12] is proposed to save NN
LM memory. Word embedding is split into sub-embeddings,
each of which is quantized and represented by code-book and
indices. Therefore, each word partially shares embeddings
with other words in both output and input word embeddings.
The sharing relations are decided automatically by the syntac-
tic and semantic similarities between words. Experiments show
that significant memory reduction rates can be obtained without
hurting NN LM performance.

The rest of the paper is organized as follows. In section 2, a
detailed analysis of standard LSTM LM is given. In section 3,
the proposed structured embedding is introduced and compared
with other methods. Experimental results and analysis are pre-
sented in section 4. Finally, section 5 concludes the paper and
discusses the future work.
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2. Memory Consumption of LSTM LM
In this section, the architecture of LSTM LM is reviewed. Then
we discuss the memory problem in conventional LSTM LM.

2.1. LSTM LM Review

LSTM LM consists of three parts: input embedding, LSTM en-
coder and output embedding. In the following part of this sec-
tion, xt denotes the x at time t. w>n denotes the transpose of
n-th row of W , where W is the weight matrix. V is the vo-
cabulary and |V | is the vocabulary size. e is the embedding
dimension, and h is the hidden size of LSTM.

The input embedding is a lookup table denoted by W (in) ∈
R|V |×e which maps word index m to word embedding x.

x = w(in)
m (1)

Concretely, one step of the LSTM takes xt,ht−1, ct−1 as
inputs, and produces ht, ct. Computation details are omitted in
this paper.

The output embedding is a projection layer denoted by
W (out) ∈ R|V |×h, followed by a softmax operation. It converts
the hidden state of LSTM h to the word probability distribution
P .

Pn =
exp(w

(out)>
n h)

∑v
k=1 exp(w

(out)>
k h)

(2)

where Pn is the probability of the n-th word.
Each row in W (in) or W (out) can be viewed as a contin-

uous vector representation of the corresponding word, i.e. the
word embedding.

LSTM LM can be trained using the back propagation
through time (BPTT) algorithm [13]. Since the probability is
normalized among V , the most computational cost is induced
by propagating on W (out).

2.2. Memory Problem In LSTM LM

The memory consumption of LSTM LM has become a se-
rious problem recently caused by the rapidly rising size of
datasets. Ignoring the biases, the parameters in LSTM LM θ
can be divided into two parts: parameters in the embeddings
θe = {W (in), W (out)} and parameters in the LSTM layer
θlstm = {Wf ,Wi, Wo,Wc}. The total number of parameters
can be easily computed given the corresponding vocabulary V ,
embedding size e and LSTM cell size h. Here we use |θ| to
denote the total number of parameters in θ.

|θ| = |θe|+ |θlstm| = |V |e+ |V |h+ 4h (h+ e)

= (|V |+ 4h) (h+ e)
(3)

A widely used dataset in language model is OneBillion-
Word (OBW)[6] with |V | = 793K. To model such number of
words, the embedding part will cost nearly 1.2GB memory on
small embedding size like e = h = 200 on OBW, which is usu-
ally too big for portable devices to hold. At the same time, one
LSTM layer has only∼ 1M parameters with the same configu-
ration.With larger vocabulary e.g. |V | = 100M in ClueWeb09
[14], even GPUs or workstations can not hold such models in
native memory.

The number of parameters increases linearly with respect
to vocabulary size, embedding size and LSTM size. We will
discuss the memory problem under the assumption that |V | ≥
10, 000 and h, e ≤ 1, 000, which is reasonable in most large

vocabulary language models. In fact, smaller e or h can greatly
reduce the parameters as the coefficient |V | is large enough. But
the performance degrades sharply as e or h goes down, due to
poor representation ability.

The major cause of memory problem in conventional em-
beddings is the lack of structure which exploits the similarity re-
lations among words. The current embedding framework treats
each word separately as a row in embedding matrix W , thus
all the embeddings are totally independent. Once a new word
w is added into vocabulary, a complete row vector xw will be
appended to the embedding matrix W .

Low-rank decomposition is usually used to reduce the pa-
rameters in matrix. A full rank matrix W is decomposed by two
matrices U ,V with lower rank. The compression rate of this
method is controllable by the rank value. But the performance
will decrease sharply at high compression rate, indicating naive
low-rank can not fully utilize the underlying structure in embed-
dings. Vector quantization can also be employed. It compresses
vectors by exploiting the global structure of these points and
has been successfully used in speech recognition[15][16], com-
puter vision[17]. However, naive vector quantization method
requires a global structure in high dimension space for good
performance [18], which is seldom satisfied in real-world occa-
sions.

There are also other promising methods proposed recently
to exploit the similarity among words. They explicitly define
the sharing principles for word embeddings, so these methods
out-perform traditional ones in language model tasks.

LightRNN [11] assumes a word w can be represented by
row embedding xrw and column embedding xcw rather than one
single embedding xw. To allocate all the words into a square
table, there exists another strong assumption in lightRNN that
there are exactly

√
|V | row and column embeddings and each

row or column embedding is shared among exactly
√
|V |words.

Under these assumptions, lightRNN compresses |V | embed-
dings into 2

√
|V | embeddings. The drawbacks of lightRNN

lie under the second assumption, which is merely satisfied for
relatively small vocabulary. As is shown later in table 4, though
the compression rate is the highest, the performance is not ac-
ceptable in real applications. What’s more, the compression rate
of lightRNN is fixed given the vocabulary.

Paper [8] explores a different approach to structured embed-
dings. It’s assumed that word can be represented by other words
in vocabulary. This approach is an ad-hoc method because the
threshold separating rare and frequent words are specified by
intuition. [19, 20] utilize more complicated methods for com-
positional code learning, but these methods are only applied on
input embedding.

Most importantly, [12] utilizes product quantization embed-
dings and achieves 8 times embedding parameters reduction on
text classification. The major contribution of this paper is that
we utilized a different configurations of product quantization
and achieved higher compression ratio (20X) without any other
compression methods.

3. Structured Embeddings with Product
Quantization

The introduction of product structured embedding (PSE) aims
to reduce the memory consumption of language model via shar-
ing partial embeddings among similar words, with the assump-
tion that one word shares different underlying properties with
different words. In this structure, rather than rows in weight
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matrix W , word embeddings are composed of the partial em-
bedding candidates from the compressed embedding structure.

As is described in section 2.2, naive VQ usually hurts the
performance. To alleviate this problem, product quantization
[21] explores the redundancy in vector space by decomposing
the space into a Cartesian product of low dimensional subspaces
and quantizing each subspace separately. Using product quan-
tization, [18, 22] achieve high compression rate in CNN for im-
age tasks with little performance degrade.

To fully utilize the partial similarity among words, we use
product quantization [21] to compress the embeddings. As il-
lustrated in Figure 1, product quantization consists of two ba-
sic steps: decomposing the embedding matrix into several sub-
spaces (also called groups in this paper) and quantizing the vec-
tors in each sub-space. Decomposing into sub-spaces ensure the
representation ability, while quantization drastically reduces the
parameters and memory cost.

In our model, we first train a vanilla language model with
conventional embeddings. Then the input and output embed-
ding matrices are individually compressed by product quantiza-
tion(PQ), after which the whole model is fine-tuned or totally
re-trained for optimal performance.

3.1. Compress via Product Quantization

Figure 1: A simple illustration of product quantization method,
partial embeddings with the same color are compressed into
one centroid

At compressing phase, the input embedding and output em-
bedding are compressed independently. The operations for two
embeddings are identical, so we take input embedding for ex-
ample in this section. Product quantization needs two hyper-
parameters, the number of clusters c and the number of groups
g. At compressing phase, product quantization is used to com-
press the matrix W ∈ R|V |×e to the index matrix Q ∈ N|V |×g

and the codebook tensor C ∈ Rg×c×
e
g , where e is the embed-

ding size and |V | is the vocabulary size. It should be noted that
in our current work, the matrix is equally divided into g groups,
so e is divisible by g, which is unnecessary in general.

In decomposition step, the original matrix W is simply
chunked into g groups along the second dimension:

W =
[
W 1,W 2, · · · ,W g] (4)

Afterwards, the sub-matrix W i is quantized one by one.
In this paper the row vectors in sub-matrix W i is clustered
via K-means [23] with K = c. K-means algorithm uses cen-
troids,namely codebook, to represent all the vectors. And it
maintains a vectors-centroids mapping, namely index, indicat-
ing which centroid is closest to each vector.

So each sub-matrix W i is compressed to an index vec-
tor qi ∈ N|V | and a codebook Ci ∈ Rc×

e
g . Consequently

the original matrix W is compressed to an index matrix Q =[
q1, q2, · · · , qg

]
∈ N|V |×g and the codebook tensor C =[

C1,C2, · · · ,Cg
]
∈ Rg×c×

e
g

The parameters in PSE, θPSE , consist of parameters in the
codebooks θC and the index matrixθQ. According to the matrix
size, total number of parameters is simply |θPSE | = |θC | +
|θQ| = ec+ |V |g. A typical setup is |V | = 10K, e = 200, g =
8, c = 400, thus the compression rate is computed by θe

θPSE
=

e|V |
ec+|V |g = 2000K

80K+80K
= 12.5. Note that the index is non-

negative integer, so we can get even higher compression rate by
using only needed bits.

3.2. Interpretation as Low-rank Decomposition

Following [24], we can regard product quantization as a special
low-rank decomposition W = UV where the value of U is
fixed and only V is updated during training. [24] argues that
fixing U helps to reduce the redundancy in naive low-rank de-
composition.

Figure 2: U (left) and V (right) in low-rank decomposition, dif-
ferent colors for different sub-spaces

As is illustrated in Fig 2, rows in U is obtained from the
rows in Q, with Uk

j,Qk
j

= 1 for 1 ≤ j ≤ g. V is a block

diagonal matrix where the i-th block is the codebook V i = Ci.
Furthermore, our model may be considered as adding an

intermediate layer where one word is represented by multiple
one-hot vectors rather than one single one-hot vectors.

4. Experiments
The PSE model is evaluated on both PTB and SWB datasets,
containing 10K and 30K words in vocabulary respectively.
LSTM LM is used in our experiments on both datasets. On
PTB, we set the embedding size to 200 and use a 2-layer LSTM
with hidden size of 200. On SWB, we build a larger model
by increasing the embedding size to 300, followed by a single-
layer LSTM with hidden size of 300. Models are trained and
tested on GTX 1080, Intel Xeon E5-2620 V4, with CUDA-8.0
and Pytorch framework.

The embedding matrix is sequentially chunked into g
chunks along the second dimension, followed by a simple K-
means from sklearn[25] in terms of vector quantization. The k-
means algorithm is initialized with ”k-means++” [26] method
and runs 10 times to get one best results.

4.1. Performance and Representation Ability

Our method is firstly investigated on PTB. We fix the hyper-
parameters g(in) = g(out) = 8, c(in) = c(out) = 400 and
test the performance of various initialization methods on PTB,
the results are shown in Table 1. pre-train (W) indicates that a
pre-trained embedding matrix is used to do product quantiza-
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Table 1: Performance of different initialization methods of
product structured embeddings on PTB.

Model Initialization PPLpre-train tied codebook
Baseline - - - 97
PSE-R - - - 165
PSE-W X - - 103
PSE-WT X X - 100
PSE-W+ X - X 102
PSE-WT+ X X X 98

Table 2: Grid search results of PSE-WT+ on PTB, the size
should double if both input and output are counted.

g\c 200 400 1000 Index size
4 117 105 97 40K
8 104 98 95 80K
10 100 96 94 100K
Codebook size 40K 80K 200K -

tion, otherwise a random initialized matrix will be used. Tied
embeddings [27] is also used as a trick to improve embeddings
quality, denoted as tied (T). Note that the structured input and
output embeddings in our model are not tied regardless of the
initialization method. And we also explored the situation when
we only know the similarities among words, that is, codebook
C are randomly initialized while index Q is initialized via some
prior knowledge (here simply pre-trained embeddings), this is
denoted as codebook (+).

The model initialized randomly (PSE-R) lacks prior knowl-
edge of word similarity. The partial embeddings are shared
among randomly picked words, leading to poor performance
(165) after compressing. Meanwhile, PSE-W utilizes such prior
by clustering the pre-trained embedding weight matrix and ob-
tains acceptable performance (103). We also tried to do product
quantization based on the tied embeddings. It gives us the best
results (98) when combined with codebook initialization (PSE-
WT+). It concludes that tying weights produces better embed-
dings for word similarities in LSTM LM, which is consistency
with [27]. On the best performing model PSE-WT+, we achieve
12.5× parameters reduction in embeddings with almost no per-
formance loss.

The effect of different PQ configurations on g and c is
also explored. As shown in table 2, the PPL decreases as g
and c increase. Larger g helps to discovery local similarities
and c helps to distinguish different properties. But when these
numbers are big enough, the performance gains are not ob-
vious while index size and codebook size grow linearly. For
g = 10, c = 1000, We get even better PPL (94) than baseline
(97) while still achieving 6.7 × compression in embeddings. It
proves that sharing partial embeddings does not hurt the repre-
sentation ability of word embeddings.

Table 3: Performance on SWB

Model PPL WER #Parameters
Embeddings Overall

Baseline 53.2 20.1 18M 18.7M
PSE-W 55.4 20.2 0.9M 1.6M

Table 4: Comparison of various embeddings compression
methods on PTB.

Compression method PPL Compression rate
Embeddings Overall

Baseline 97 1 1
Naive low-rank 112 9.8 4.5
Vector quantization1 130 12.5 4.8
LightRNN 2 223 40 6.2
PSE-WT+ 98 12.5 4.8
sPSE-WT+3 206 40 6.2

We have also tested our method on switchboard rescoring
task. The language model is trained on Fisher dataset, vocabu-
lary consists of words with more than 3 occurrences, about 30K
words in total. By experience, we set c(in) = c(out) = 1000
and g(in) = 4, g(out) = 6. In this task, we only initialized
the index matrix Q with pre-trained LSTM LM baseline (PSE-
W). As is shown in table 3, the proposed model gives nearly the
same WER (20.2%) as baseline (20.1%) while achieving 20×
compression rate in the embeddings, 11.7× compression rate in
the whole model.

4.2. Comparison with Other Methods

Performances of different compression methods are compared
in table 4. In order to get similar compression rate, the rank is
set to 20 in naive low-rank decomposition, and the number of
clusters is set to 400 in Vector quantization.

LightRNN has the highest compression rate but worst per-
formance. Moreover, the compression rate of lightRNN is fixed.
To compare with lightRNN we build a smaller model named
sPSE-WT+ with equal compression rate. The sPSE-WT+ has
even lower PPL than lightRNN. Compared with naive low-
rank and vector quantization, the proposed model PSE-WT+
achieves the best PPL at minimal memory cost because it uti-
lizes deeper structure in word embeddings.

5. Conclusion and Future Work
This paper proposes structured word embedding framework
based on product quantization to reduce memory consumption
of NN LM. Both input and output embeddings are replaced by
product structured embeddings. The performance gap between
original model and compressed model is negligible in terms of
both PPL and WER, while compressed model has 10× ∼ 20×
fewer parameters in input and output embeddings. Future work
will focus on the training efficiency of the proposed approach
as well as combination with other compression techniques.

1The vector quantization is equal to the PSE-WT+ when g = 1.
2We follow the example configurations on https://github.

com/Microsoft/CNTK/tree/master/Examples/Text/
LightRNN, except for that the embedding size and hidden size are
both set to 200

3g = 4, c = 50
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