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Abstract
Recently, the connectionist temporal classification (CTC) based
acoustic models have achieved comparable or even better per-
formance, with much higher decoding efficiency, than the con-
ventional hybrid systems in LVCSR tasks. For CTC-based
models, it usually uses the LSTM-type networks as acoustic
models. However, LSTMs are computationally expensive and
sometimes difficult to train with CTC criterion. In this pa-
per, inspired by the recent DFSMN works, we propose to re-
place the LSTMs with DFSMN in CTC-based acoustic model-
ing and explore how this type of non- recurrent models behave
when trained with CTC loss. We have evaluated the perfor-
mance of DFSMN-CTC using both context-independent (CI)
and context-dependent (CD) phones as target labels in many
LVCSR tasks with various amount of training data. Experimen-
tal results shown that DFSMN-CTC acoustic models using ei-
ther CI-Phones or CD-Phones can significantly outperform the
conventional hybrid models that trained with CD-Phones and
cross-entropy (CE) criterion. Moreover, a novel joint CTC and
CE training method is proposed, which enables to improve the
stability of CTC training and performance. In a 20000 hours
Mandarin recognition task, joint CTC-CE trained DFSMN can
achieve a 11.0% and 30.1% relative performance improvement
compared to DFSMN-CE models in a normal and fast speed test
set respectively.
Index Terms: speech recognition, connectionist temporal clas-
sification, CTC, DFSMN-CTC, CTC-CE

1. Introduction
In the past few years, deep neural networks have become the
state-of-the-art acoustic models in large vocabulary continuous
speech recognition (LVCSR) systems. Depending on how the
networks are connected, there exist various types of deep neural
networks, such as feedforward fully-connected neural networks
(FNN) [1, 2] , convolutional neural networks (CNN) [3, 4],
recurrent neural networks (RNN) [5, 6] and long short-term
memory networks (LSTM) [7]. In the conventional hybrid ap-
proach, deep neural networks are used to generate the individual
frames of acoustic data, and their distributions are reformulated
as emission probabilities for a hidden Markov model (HMM).
Model training can then be carried out by using the frame-level
cross-entropy (CE) criterion followed by some sequence dis-
criminative training methods such as maximum mutual infor-
mation (MMI) [8].

For conventional deep neural networks hidden Markov
model hybrid systems, an additional problem is that the frame-
level training targets must be inferred from an alignments deter-
mined by the HMM. More recently, researchers have paid more
and more attention to the end-to-end speech recognition sys-
tems. Recent works on end-to-end speech recognition can be
categorized into two main approaches: Connectionist Temporal
Classification (CTC) [9, 10, 11, 12, 13, 14, 15] and attention-

based encoder-decoder [16, 17, 18, 19, 20]. Both methods
regard speech recognition as a sequence-to-sequence mapping
problem and address the problem of variable-length input and
output sequences.

The key idea of CTC is to use intermediate label represen-
tation allowing repetitions of labels and occurrences of blank
label to identify less informative frames. CTC-based acoustic
models can automatically learn the alignments between speech
frames and target labels, which removes the need for frame-
level training targets. In previous works [9, 12, 13, 15], the
acoustic models used together with CTC are normally recurrent
neural networks (RNNs), especially the Long Short-Term Mem-
ory (LSTM). Because of the memory mechanism of LSTM
models, it means that the outputs no longer need to occur at
the same time as the input features. Thereby, LSTM has be-
come the most popular or somewhat default choice for end-to-
end speech recognition systems with CTC. Experimental results
in [11, 12, 13] shown that CTC-based acoustic models have
achieved better performance than the conventional hybrid mod-
els. Moreover, experimental results also shown that CTC with
bidirectional LSTM (BLSTM) can significantly outperform the
unidirectional one. However, the output of the BLSTM is avail-
able after all of the frames in the input sequence are fed into the
BLSTM because the future information is backward propagated
from the end of the sequence. This latency problem prevents the
application of CTC with BLSTM to low-latency online speech
recognition. Another additional problem is that the CTC train-
ing of both unidirectional and bidirectional LSTM require to un-
roll the LSTM by the length of the input sequence, which con-
sumes a huge amount of memory especially when the sequence
is very long. In conventional hybrid approach, some variation
architectures are proposed to handle these problems, such as
the latency-controlled bidirectional LSTMs [21, 22]. However,
these methods haven’t been verified in CTC based models.

On the other hand, some non-recurrent neural architectures
have been proposed to model the long-term dependency, such as
the time delay neural network (TDNN) [23, 24, 25], very deep
CNN [26], feedforward sequential memory networks (FSMN)
[27, 28, 29]. In [29], the proposed Deep-FSMN (DFSMN)
can significantly outperform the BLSTM while faster in train-
ing speed and less in model parameters when trained with the
frame-level targets using cross-entropy. Moreover, DFSMN can
easily control the latency by designing the lookahead filters or-
der and the stride. In this work, we firstly try to replace the
LSTM with DFSMN in CTC-based acoustic models. We have
evaluated the performance of DFSMN-CTC acoustic models
in various LVCSR tasks that consist of about 1000, 4000 and
20000 hours of training data. Experimental result shown that
DFSMN-CTC with either CI-Phone or CD-Phone targets can
significantly outperform the conventional hybrid DFSMN-CE
model using CD-Phone targets. We also found that CTC-based
acoustic models are more robust to the speed rate than CE-based
models. Unfortunately, CTC-based models can somehow suf-
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fer from the latency problem that at which an output target is
detected can be arbitrarily delayed after its corresponding in-
put event [30]. In this work, we have proposed a novel joint
CTC-CE learning framework by using CTC-blank posterior as
regularization term to handle this problem. More importantly,
the joint CTC-CE learning method helps to improve the sta-
bility of CTC training and the performance of DFSMN-CTC
based acoustic models. Finally, in a 20000 hours Mandarin
recognition task, joint CTC-CE trained FSMN can achieve a
11.0% and 30.1% relative performance improvement compared
to DFSMN-CE models in a normal and fast speed test set re-
spectively.

2. Connectionist Temporal Classification
Connectionist temporal classification (CTC) [14] is a loss func-
tion for sequence labeling problems that converts the sequence
of labeling with timing information into the shorter sequence of
labels by removing timing and alignment information. When
applied to acoustic modeling, CTC can automatically learn the
alignments between input speech frame sequences and their la-
bel sequences (e.g., phonemes or characters) without employ-
ing the frame-level alignment information. The main idea is to
introduce the additional CTC blank (–) label, and remove the
blank labels and merging repeating labels to obtain the unique
corresponding sequence.

For a set of target labels, Ω, and its extended CTC target
set is defined as Ω̄ = Ω ∪ {–}. Given an input sequence x
and its corresponding output label sequence z. The CTC path,
π, is defined as a sequence over Ω̄, π ∈ Ω̄T , where T is the
length of the input sequence x. The label sequence z can be
represented by a set of all possible CTC paths, Φ(z), that are
mapped to z with a sequence to sequence mapping function F ,
z = F(Φ(z)). The mapping function F maps the CTC path to
the label sequence by first merging the consecutive same labels
into one and then discard the blank labels, such as:

F(a,−, b, c,−,−)
F(−,−, a,−, b, c)
F(a, b, b, b, c, c)
F(a,−, b,−, c, c)





=> (a, b, c) (1)

Thereby, the log-likelihood of the reference label sequence z
given the input x can be calculated as an aggregation of the
probabilities of all possible CTC paths:

P(z|x) =
∑

π∈Φ(z)

P(π|x) (2)

For CTC based acoustic modeling, the CTC is usually applied
on the top of deep recurrent neural networks (RNNs). During
training, the RNNs can then be trained to minimize the follow-
ing CTC objective function :

Lctc(x) = − logP(z|x) (3)

The forward-backward algorithm can be used to compute the
gradient of Lctc with respect to the RNNs outputs. Decoding a
CTC network can be performed with a beam search algorithm
by using the weighted finite-state transducers (WFSTs) [13].

3. Our Approach
3.1. DFSMN-CTC

Deep-FSMN (DFSMN) [29] is an improved FSMN architecture
by introducing the skip connections and the memory strides. As
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Figure 1: Joint CTC and CE learning framework for DFSMN
based acoustic modeling.

shown in Figure 1, it is a DFSMN with 10 DFSMN compo-
nents followed by 2 fully-connected ReLU layers and a linear
projection layer on the top. The DFSMN component consists
of four parts: a ReLU layer, a linear projection layer, a memory
block and a skip connection from the bottom memory block,
except for the first one that without the skip connection from
the bottom layer. Thereby, the formulations of the `-th DFSMN
component take the following form:

h`t = max(W`m`−1
t + b`t, 0) (4)

p`t = V`
th
`
t + v`t (5)

m`
t = m`−1

t +p`t+

N`
1∑

i=0

a`i�p`t−s1∗i+

N`
2∑

j=1

c`j�p`t+s2∗j (6)

Here, h`t and p`t denote the outputs of the ReLU layer and lin-
ear projection layer respectively. m`

t denotes the output of the
`-th memory block. N `

1 and N `
2 denotes the look-back order

and lookahead order of the `-th memory block, respectively. As
shown in eq.(6), by adding the skip connections between the
memory blocks of DFSMN components, the output of the bot-
tom layer memory block can be directed flow to the upper layer.
During back-propagation, the gradients of higher layer can also
be assigned directly to lower layer that help to overcome the
gradient vanishing problem. s1 and s2 are the strides for look-
back and lookahead filters respectively, which help to remove
the redundancy in adjacent acoustic frames.

In previous works, DFSMN is evaluated in the conventional
hybrid approach that using the frame-level target labels and the
cross-entropy loss function. In this work, we will try to evaluate
the performance of CTC-based DFSMN trained both with CD-
Phones and CI-Phones. We will explore how this type of non-
recurrent models behave when trained with CTC loss.

3.2. Joint CTC-CE Learning Framework

In previous work [11], it observed that training with CTC is un-
stable that sometimes training will fail to converge. In [11], it
suggests to handle this problem by using two output layers with
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CTC and the conventional CE loss during the training, or ini-
tializing from a CE loss pre-trained model. In our experiments,
we found that even with CE pre-trained networks as initializa-
tion, CTC training can sometime still fail to converge. More-
over, we found that CTC training with CI-Phones is more stable
than CD-Phones. This is because the searching space of CD-
Phones alignments is more huge than that of CI-Phones. As
to solve this unstable problem, we have proposed a novel joint
CTC and CE learning framework. Comparison of the DFSMN-
CTC and DFSMN-CE acoustic models, except for the training
loss function, the only difference is the additional CTC blank
label. Thereby, instead of using two softmax output layers for
CTC and CE loss, we only use a single softmax output layer as
shown in Figure 1, and define a novel optimization framework
by joint the CTC loss and a regularized CE loss as followings:

Lctcce(x) = Lctc(x) + α · Lce(x) (7)

Lce(x) = −
K∑

i=2

(1− p(y1|x))ti log p(yi|x) (8)

Where, α is a pre-set constant and the CTC loss, Lctc(x),
is the same as eq.(3). p(y1|x) in eq.(8) denotes the prob-
ability of the CTC blank label in the softmax output layer.
T = {t2, t3, · · · , tK} denotes the frame-level target labels.
(1 − p(y1|x)) can be regarded as the unassigned credit of the
output without the CTC blank, which is then used to regular-
ized the CE loss. This regularization term is helpful and impor-
tant. At the beginning of training, the prediction of the acoustic
model is just like a random guessing, then both the CTC and CE
loss play a big role in guiding the training. During training, the
CTC loss tend to generate the shape spike distribution that only
a few spikes for each output target while predicting blank label
with high probability the rest of time. Thereby, the regularized
CE loss will help to produce the accurate alignment for the out-
put target while won’t effect the distribution of blank label. As
the result, the proposed joint CTC-CE training will be more sta-
ble and help to relieve the delay problem. Decoding procedure
of the Joint CTC-CE loss trained model is the same to the plain
CTC model.

4. Experiments
4.1. Experimental Setup

In this work, we have evaluated the performance of the pro-
posed DFSMN-CTC and the joint CTC-CE learning frame work
on several large vocabulary Mandarin speech recognition tasks,
with the total amount of training data being 1000 hours (1k),
4000 hours (4k) and 20000 hours (20k). We have also con-
structed two test sets, a normal test set and a fast speed test
set, to evaluate the performance. Acoustic features used for all
experiments are 80-dimensional log-mel filterbank (FBK) ener-
gies computed on 25ms window with 10ms shift. We stack the
consecutive frames within a long context window of 11 (5+1+5)
to produce the 880-dimensional features and then subsample the
input frames with 3. These features are used as inputs for all the
following experiments. All models are trained in a distributed
manner using BMUF [31] optimization on 16 GPUs.

4.2. Baseline Systems

For the baseline CE-based models, we have trained the hybrid
Latency-Controlled BLSTM (LCBLSTM) [21, 22] and DF-
SMN with the lower frame rate (LFR) [29]. An existing CE

Table 1: Performance of the CE and CTC based models.

Data Test set (WER %)
Method Label (Hours) Normal Fast

1k 19.77 47.56
BLSTM-CE CD-Phone 4k 16.53 37.17

20k 13.97 31.71
1k 18.19 44.25

DFSMN-CE CD-Phone 4k 14.24 33.92
20k 12.10 29.79
1k 17.82 43.22

DFSMN-CTC CI-Phone 4k 13.82 32.15
20k 11.46 26.84
1k 16.95 40.27

DFSMN-CTC CD-Phone 4k 13.13 26.70
20k 11.71 24.04

Table 2: Comparison (model size in MB, training time per
epoch in hour) of various acoustic models in the 1000 hours
training dataset.

Method Label Model Size Time/Epoch
(MB) (Hours)

BLSTM-CE CD-Phone 155 3.67
DFSMN-CE CD-Phone 114 0.50

DFSMN-CTC CD-Phone 114 0.58
DFSMN-CTC CI-Phone 97 0.43

trained hybrid DNN-HMM system using CD-States is used to
realign and generate the 10ms frame-level target labels. We
firstly map the 14359 CD-states to 7951 CD-Phones and sub-
sample by averaging 3 one-hot target labels (LFR is 30ms),
producing the soft LFR targets. For the baseline LFR trained
BLSTM system, we have trained a hybrid LCBLSTM model
by stacking 3 BLSTM layers (500 memory cells for each direc-
tion), 2 ReLU DNN layers (2048 hidden nodes for each layer)
and a softmax output layer. The center-context frames and
right-context frames of LCBLSTM are Nc = 27 and Nr = 13
respectively. LCBLSTM is trained using the BPTT with a mini-
batch of 30 sequences. For LFR DFSMN model, the model
topology is the same as Figure 1, except the softmax output
layer that without the blank unit. The DFSMN consists of 10
DFSMN components followed by 2 fully-connected ReLU lay-
ers, a linear projection layer and a softmax output layer with
7951 CD-Phone targets. The look-back order and lookahead or-
der of the memory block is 5 and 2 respectively, and the strides
are 2 and 1 respectively.

The performances of the baseline CE trained LCBLSTM
and DFSMN, denoted as BLSTM-CE and DFSMN-CE, are as
shown in Table 1. Experimental results show that DFSMN can
consistently outperform the LCBLSTM with different amount
of training data. For example, in the normal test set, 20000
hours (20k) training data trained DFSMN can achieve a WER
of 12.10% while the performance of the LCBLSTM is 13.97%,
which is about 13.4% relative performance improvement. In the
fast speed test set, DFSMN can still outperform the LCBLSTM,
but the performance gain is less than the normal test set.

4.3. DFSMN-CTC

The architecture of the DFSMN-CTC model is as shown in Fig-
ure 1. The output targets can be either CI-Phone or CD-Phone

773



75

77

79

81

83

85

87

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

C
TC

 T
O

K
EN

 A
C

C
%

#EPOCH

alpha=0 alpha=0.1 alpha=0.5 alpha=1.0 alpha=2.0

Figure 2: Comparison of various learning curves of joint CTC-
CE trained DFSMN models.

Table 3: Performance of the Joint CTC-CE trained DFSMN
models on the 20000 hours training set.

Method Alpha Test set (WER %)
Normal Gain Fast Gain

CE - 12.10 - 29.79 -
CTC - 11.71 3.2% 24.04 19.3%

0.1 10.92 9.8% 21.68 27.2%
Joint 0.5 10.67 11.8% 21.98 26.2%

CTC CE 1.0 10.77 11.0% 20.80 30.1%
2.0 11.03 8.8% 22.86 23.3%

set. Here, the CD-Phone set is the same to that used in CE
experiments. We firstly map the word level training data tran-
scripts into the CI-Phone sequences by using a Mandarin lex-
icon. And then map these CI-Phone sequences into the CD-
Phone sequences by using a context-dependent tree. These CI-
Phone sequences and CD-Phone sequences are used as the tar-
gets to train the CI-Phone and CD-Phone based DFSMN-CTC
models respectively. The performance of various DFSMN-CTC
models are as shown in Table 1.

Compared to the baseline DFSMN-CE models, both CI-
Phone and CD-Phone based DFSMN-CTC models can achieve
much better performance whether in the normal test set or in
the fast speed test set. Experimental results in the fast speed
test set indicate that CTC model is more robust to the speed
rate compared to the hybrid CE models. CD-Phone DFSMN-
CTC models always perform much better than the CI-Phone
models that is consistent with previous LSTM-type CTC works
[11, 30]. Moreover, with the increasing of training data, the per-
formances gap between the CTC-based models and CE-based
models are more obvious. The performance of the 20k training
data trained CD-Phone DFSMN-CTC seems not play as well as
when the training data is 4k. This is because the training al-
ways failed with the general parameter configurations. Finally,
we trained the model with a much smaller learning rate, being
0.000001, which is 10 times smaller than we used in other ex-
periments. Maybe it can achieve better performance by more
carefully tuning the learning rate schedule or introducing some
normalization methods. Instead, we proposed a joint CTC-CE
learning framework to solve this unstable problem. The experi-
mental results will be presented in next section. In Table 2, we
have compared the model size and training time of CE-based
and CTC-based models. CTC training is only a slightly slower
than the corresponded CE training.
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Figure 3: Label posteriors estimated by CTC and Joint CTC-CE
trained DFSMN. (The CD-Phone label posteriors are mapped
into the CI-Phone label posteriors.)

4.4. Joint CTC-CE

We have trained DFSMN using the joint CTC-CE learning
method with various α, being 0.1, 0.5, 1.0 and 2.0. If α is
equal to 0, then joint CTC-CE is turn out to be the plain CTC.
The training set consists of 20000 hours data. The CD-Phone
sequences and the CD-Phone alignments are used as targets
to train these models. Learning curves in Figure 2 show that
the joint CTC-CE models converge much faster the plain CTC
model, especially at the beginning of training. Experimental re-
sults in the normal and fast speed test sets are listed in Table
3. Joint CTC-CE trained DFSMN can significantly outperform
the CE or CTC individual models. With α being 1, the joint
CTC-CE model can achieve 11.0% and 30.1% relative perfor-
mance improvement compared to the CE-based model in the
normal and fast speed test sets respectively. The label posteri-
ors estimated by CTC and joint CTC-CE trained DFSMN for
a sentence (w an2 j u4 z ong3 d ong4 y uan2) in the training
set are as shown in Figure 3(a) and Figure 3(c). Figure 3(b)
is the ground truth CI-Phone sequence that the central location
of each phone (marked with red dots). Consistent with previ-
ous work [12], the CTC-based model has learned an arbitrary
alignment. For joint CTC-CE trained DFSMN, the constrained
CE loss (in eq.(8)) helps to produce the accurate alignment for
the output target while won’t effect the distribution of the blank
label that the spikes of label posteriors usually match the cen-
tral locations of each phone (as shown in Figure 3(b)). Thereby,
joint CTC-CE learning help to overcome the spike delay prob-
lem [12], which is essential to the real-time speech recognition.

5. Conclusions
In this work, we present a CTC-based acoustic model using
DFSMN instead of the popular LSTM. Experimental results
shown that DFSMN-CTC can significantly outperform the con-
ventional CE-based model. Thereby, DFSMN-CTC can take
advantage of both DFSMN and CTC that faster in training and
decoding and better in performance. Moreover, we also propose
a novel joint CTC-CE learning framework to handle the unsta-
ble and spike delay problems of CTC. In a 20000 hours Man-
darin speech recognition task, the proposed method can achieve
11.0% and 30.1% relative performance improvement compared
to the CE-based model in the normal and fast speed test sets
respectively.
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