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Abstract
Encoding speaker-specific characteristics from speech signals
into fixed length vectors is a key component of speaker identifi-
cation and verification systems. This paper presents a deep neu-
ral network architecture for speaker embedding models where
similarity in embedded utterance vectors explicitly approxi-
mates the similarity in vocal patterns of speakers. The proposed
architecture contains an additional speaker embedding lookup
table to compute loss based on embedding similarities. Fur-
thermore, we propose a new feature sampling method for data
augmentation. Experimentation based on two databases demon-
strates that our model is more effective at speaker identification
and verification when compared to a fully connected classifier
and an end-to-end verification model.
Index Terms: speaker classification, speaker discrimination,
representation learning, loss combination, feature augmentation

1. Introduction
Representations that can distinguish speakers play essential
roles in many speaker recognition-related problems like speaker
identification, verification, detection, segmentation, and cluster-
ing as well as in speaker-dependent speech recognition systems.
By comparing speaker representations, a system can recognize
the identity of a speaker or verify whether or not the current
speaker matches an enrolled target speaker.

To build speaker models, conventional approaches like i-
vector [1] elaborate on decomposing feature space into sub-
spaces corresponding to sound factors including speaker, ses-
sion, and channel effects, and then extracting the speaker fac-
tors. With the recent success of deep models in representation
learning, researchers have developed deep neural architectures
(DNA) to generate speaker-specific representations [2, 3, 4].
One of the earlier studies introduced the d-vector approach [2],
where a d-vector (or deep vector) has a similar role to i-vector
but is derived from a deep neural network. Utterance-level d-
vectors are obtained by averaging over the activations of the
last hidden layer for all frame-level features.

One of the main criticisms on the d-vector approach in ver-
ification is that it handles the front-end representation learn-
ing and back-end scoring components separately. To address
this issue, Heigold et al. [3] proposed an end-to-end archi-
tecture that jointly optimizes the system components in an in-
tegrated network for the “OK Google” benchmark of a text-
dependent case where speakers are required to state a prede-
termined phrase. Later, Snyder et al. [5] extended the problem
domain to text-independent speaker verification context by de-
veloping another end-to-end architecture. For Microsoft’s “Hey,

Cortana” benchmark, attention-based end-to-end models were
introduced [6]. Recently, Baidu researchers presented an end-
to-end neural speaker embedding system [4], which transforms
utterance-level input into a speaker embedding represented as
a continuous vector. Rather than training front-end and back-
end components together, they trained the networks so that co-
sine similarity in the embedding space corresponds to utterance
similarity as much as possible while assuming cosine similarity
based back-end classifiers.

End-to-end systems were successful in their own bench-
mark tasks due to large amounts of dedicated data, but most
of them suffer from difficulties in model training and lack of
generalizability [7]. The difficulties come mainly from the fact
that those systems take utterance pairs as training input to learn
whether each pair is from the same speaker or different speak-
ers. Propagating pairs through trainable subnetworks increases
computational costs and the possibility of unstable convergence.
Training the model in a pair-wised style highly depends on the
distribution of the sampled pairs. In addition, the task-oriented
nature of the end-to-end approach causes limited reusability
while disregarding the embedding systems [4, 8].

This paper presents a DNA for speaker embedding models
where the vector space similarity of utterance embeddings di-
rectly approximates the similarity of vocal patterns of speak-
ers. We have similar motivation as [4] while proposing an-
other loss term instead of using triplet loss. Our DNA does
not take sampled pairs nor triplets as input in the training phase,
avoiding the aforementioned difficulties. More specifically, the
proposed method minimizes the additional loss that measures
the errors based on the explicit computation of the similarities
between the current embedding and updatable speaker embed-
dings in memory, which is inspired by word embedding models
[9, 10, 11]. The computational burden of the additional term is
marginal compared to that of the entire graph. Furthermore, we
train the model on utterance-level speech segments instead of
frame-level ones as in [3, 4, 5, 6, 8], since many speaker recog-
nition applications, like user verification systems with certain
pass phrases, perform tasks on the utterance-level.

We introduce an embedding DNA with its training proce-
dure for speaker identification and verification in section 2. Sec-
tion 3 provides the experimental results of the proposed method
on TIMIT and LibriSpeech databases. Finally, the last section
summarizes and concludes the paper.

2. Proposed Method
We first explain how to augment data for training speaker em-
bedding models whose inputs are feature vector sequences ex-
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tracted from utterance-level speech segments. Next, we de-
scribe the baseline network structure for speaker classification
and propose a generalized architecture. The speaker classifier
itself can be employed for a closed-set speaker identification,
in which a system is aware of all candidate speakers. Hence,
we use two expressions, speaker classifier and speaker identi-
fication model, interchangeably, depending on context. After
completing the classifier training, we reuse the trained network
as a feature extractor for verification. In this case, we refer to
the classifier training and the network adaptation as pre-training
and fine-tuning, respectively.

2.1. Data Augmentation

Augmentation is crucial in utterance-level modeling where the
number of training instances is far smaller than that in frame-
level modeling, especially when there are a few utterances per
speaker. While there have been some augmentation methods
that were successful in training deep models for speech recog-
nition [12, 13] and classifying a speaker’s native language [14],
the methods for speaker recognition were not thoroughly inves-
tigated yet. Since frame-level modeling [15, 16] itself could
increase the number of training instances by extracting many
frames from an utterance, there was less motivation to augment
data. For utterance-level modeling, most successful systems
trained their network with sufficient data from more than tens
of thousands of speakers [3, 4, 5, 6]. Therefore, previous papers
rarely addressed data augmentation problem.

Perturbing speech data without changing labels, is a com-
mon augmentation strategy in speech recognition. However,
many perturbation methods that preserve phoneme labels are
not speaker-invariant. Variations on frequency domain may in-
volve a risk that perturbed features will lose the characteristics
of the speaker [12, 17]. Tempo and speed perturbation [13] are
also prone to such limitations because temporal durations for
each phoneme engage deeply with different voice generation
[18].

To preserve speaker labels, we follow a resampling style
where each utterance is randomly split into several pieces.
Then, a piece is either removed or left in an alternating fashion,
and the remaining pieces are concatenated. This is an exten-
sion of the augmentation implemented in [14], which sampled
continuous subsequences from the original input. We select the
longer concatenated speech between the pieces at odd positions
and the pieces at even positions in order to prevent the input
from being too short. Since the procedure runs in each epoch
and the deep learning process usually iterates on a training set
over many epochs, the deleted speech in an iteration will be fed
into a model in other iterations.

2.2. Speaker Classifier

The baseline network consists of a d-vector extraction module,
which acts as a transform function δ(·) that maps a sequence of
feature vectors, x, to d-vector d, i.e. δ(x) = d, and a fully con-
nected layer whose output nodes correspond one-to-one with
speaker IDs (Figure 1). We use a long short-term memory
(LSTM) recurrent neural network (RNN) [19] with a single last
output followed by a fully connected layer for extracting the d-
vector as in [3]. While it might improve the model to replace the
subnetwork structure with sophisticated ones, here we focus on
formulating loss with the extracted d-vector rather than archi-
tecting the subnetwork for transforming a feature sequence into
a d-vector. The trainable weights of the network are optimized
using softmax cross entropy loss lf with fully connected output

Frames of utterance

d-vector extractor 𝛿𝛿(⋅)

LSTM

Fully connected

Fully connected, Softmax

Speaker ID

Figure 1: Baseline Architecture.

activations af, of which the ith element is defined as follows:

(af)i =Wi · d+ bi, (1)

whereWi and bi are the weights and bias of the fully connected
layer corresponding to speaker ID i ∈ {1, 2, ...,K}, respec-
tively. The size of af equals to the number of speakers in the
training set, K.

For tasks that involve handling out-of-domain speakers like
speaker verification, δ can produce speaker representations for
the input of a back-end classifier, after trained as a feature ex-
tractor by minimizing lf. A straightforward approach to a back-
end classifier is computing the cosine similarity between two
representations for speaker discrimination problems that deter-
mine whether or not they are from the same speaker [2], but the
reported performance was not satisfactory [3, 20]. Although
other back-end classifiers including linear discriminant analysis
(LDA) and probabilistic LDA were investigated [7, 21], there
still remain inconsistencies in optimization objectives between
classification and discrimination.

Another promising approach is to construct a Siamese net-
work and to optimize the d-vector extraction module and thresh-
old part simultaneously. The Siamese architecture consists of
two identical subnetworks that share trainable weights [22].
The subnetworks transform speech segment pairs into two d-
vectors, and then scalar energy function evaluates the compati-
bility among them. In [5], the authors used a Siamese network
in training phase, and the models in [3] and [6] were also re-
duced to Siamese networks when the number of enrollment ut-
terances is one.

However, these models require cumbersome procedures of
sampling genuine and impostor pairs by picking the most simi-
lar impostor for each utterance [6] or constructing a mini-batch
by selecting genuine pairs without any two pairs from the same
speaker and then forming impostor pairs among them [5]. Re-
cently, triplet loss was employed to build speaker embedding
systems [4, 8], but the sampled triplets must satisfy the hard
constraints. Moreover, training identical subnetworks at the
same time resulted in unstable convergence [7]. For that reason,
[4] pre-trained a softmax speaker classifier and [5] fed training
pairs by a meticulous scheme that arranges the feeding order of
utterances according to duration.

Figure 2 depicts our proposed architecture that contains a
trainable embedding lookup table E of size K × h where h
is the d-vector size, similarly to that of word embedding mod-
els [9, 10]. Each embedding in the table, Ei ∈ Rh, acts as
an enrolled speaker model of the corresponding speaker. We
compute the similarity scores between the d-vector and speaker
embeddings in the table. With this computation, the model can
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Figure 2: Generalized Architecture. Data flow along arcs and
go through operations expressed as box objects.

compare d-vectors in an indirect way without requiring utter-
ance pair input. The score vector is used to compute the soft-
max cross entropy loss. Just before the softmax layer, the score
vector goes through a linear layer, a rectified linear unit (ReLU)
layer, and then a linear layer once more. This explicit formu-
lation stimulates the d-vectors of the same speaker as close as
possible, whereas those of different speakers maintain distance
from each other regarding the certain similarity metric. The lin-
ear and ReLU layers keep scores lower than a certain similarity
to enlarge the influence of the speaker embeddings near the d-
vector.

We used a cosine similarity metric simcos in this work, and
the ith element of the similarity score vector s is expressed as

si = simcos(Ei, d) =
Ei · d

‖Ei‖2‖d‖2
. (2)

s in (2) is identical to d in (1) except that the d-vector and em-
beddings are normalized to have unit Euclidean norm and that
the bias term is omitted. This row normalization was reported
to be consistently superior to the cases of non-normalization,
column normalization only, and both row and column normal-
ization in learning word embeddings [11]. The loss term based
on the score vector is derived as

ae = Linear(ReLU(Linear(s))), (3)

le = − log σy(ae), (4)

where σk(·) yields the kth element value of softmax output
and y is speaker ID. We generalize the baseline model by
defining a combined loss as (1 − λ)lf + λle, where 0 ≤
λ ≤ 1. For classification, the predicted label is obtained as
argmaxk (1− λ)σk(af) + λσk(ae). Though we designed this
architecture to bridge the gap between classification and dis-
crimination, the classification performance itself was improved
as well (see Section 3.2).

2.3. Fine-tuning for Verification

We followed the speaker verification protocol introduced in [3]
by using only one enrollment utterance to simplify the discus-
sion. Since the proposed classifier learns to map utterances
to the embedding space where the cosine similarity reflects
speaker characteristics well, it is sufficient to find a threshold

level of the similarity score for verification. The score is com-
puted as simcos(δ(xenrol), δ(xtest)) given the enrollment utter-
ance xenrol and test utterance xtest. Then simple logistic regres-
sion leads to a threshold mechanism just as in the end-to-end
architecture [3]. We obtain the verification model by reusing
the pre-trained weights of the d-vector extraction module from
the classifier and fine-tuning only the logistic regression.

3. Experiments and Results
3.1. Experiment Setup

We prepared the TIMIT and LibriSpeech databases [23] con-
taining 16kHz sampled recordings for our experiments, and di-
vided speakers in each corpus into two groups: one for train-
ing and testing speaker classifiers as well as fine-tuning verifi-
cation models and the other for only testing verification mod-
els. For TIMIT corpus, we assigned 462 speakers composing
“train” data to the first group, while 168 speakers composing
“test” data were reserved for the second group. For speaker
classification, as in [16], we used “SX” and “SI” sentences in
the first group for training and “SA” sentences in the first group
for testing. Similarly, the LibriSpeech database was decom-
posed into two datasets: “train-clean-100” (251 speakers) and
“train-clean-360” (921 speakers) for the first group as well as
“dev-clean” (40 speakers) and “test-clean” (40 speakers) for the
second group. Then, we split the former group of LibriSpeech
randomly into training and test data with 9:1 ratio for speaker
classification.

Each frame consists of 40 log Mel filterbank energy fea-
tures extracted from a frame size of 32 ms with a frame shift
of 16 ms. Note that the presented experiments were performed
without any other speech preprocessing including voice activ-
ity detection, mean cepstral substitution, and global or speaker-
level normalization with mean and variance. Instead, RNN is
expected to conduct preprocessing to some extent, which fol-
lows the deep learning trend towards minimizing preprocessing
of input.

The d-vector size and the number of LSTM units were 256
for the experimented models in this work. We limited the max-
imum length of feature vector sequence x to 200 frames, be-
cause too many steps for backpropagating-through-time are not
desirable [19]. Truncating the sequence of features to the fixed
length was done after the augmentation. In the training phase,
we applied batch normalization and dropout of 0.1 for the fully
connected layer followed by the last RNN output. The batch
size was 256, and AdamOptimizer [24] updated the parame-
ters with learning rate of 10−4, β1 = 0.9, and β2 = 0.99 for
all experiments. We regularized the baseline model with L2
loss through multiplying the average of the squared weights of
the fully connected layers by the regularization parameter 0.01.
Since the generalized architecture and the Siamese architecture
normalize d-vectors during the cosine similarity computation,
we did not apply L2 regularization for them.

3.2. Performance Comparison

To investigate the effect of the augmentation introduced in
Section 2.1, we trained the baseline speaker classifiers on the
TIMIT database by varying the number of splitting points p
from zero (no augmentation) to five. The results in Figure 3
show the effectiveness of the proposed method. The dataset
augmentation for the classification on LibriSpeech was not
as effective as on TIMIT since the number of utterances per
speaker in LibriSpeech is more than ten times as that in TIMIT.
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Figure 3: Augmentation effect with respect to the number of
splitting points experimented on TIMIT. p = 0 means no aug-
mentation.

Table 1: Verification error rates (%) for different training
schemes.

Training scheme TIMIT Libri

without pre-training 9.2 10.4
fine-tuning the baseline (λ = 0) 4.4 5.1
fine-tuning the proposed (λ = 0.5) 3.6 4.5

Nevertheless, the augmentation did not degrade the perfor-
mance and helped the models be robust. Therefore, we applied
the augmentation using three splitting points for all the experi-
ments presented below.

Figure 4 visualizes the speaker identification performance
of three generalized models: the model with λ = 0 (called M0),
which is the baseline model; the model with λ = 1 (called M1),
which minimizes le without considering lf; and the model with
λ = 0.5 (called M0.5). The experiments were repeated several
times and the error rate of M0 fluctuated between 3.1% and
5.7% while that of M0.5 was in the range of 1.7 ∼ 3.1% on
TIMIT. On LibriSpeech, M0 and M0.5 achieved 2.3 ∼ 4.3%
and 0.8 ∼ 1.8% error rates respectively. For both databases,
M0.5 was consistently better than the others. The performance
of M1 was poor at the early stage of the training, but it caught
up with the baseline model performance at certain iterations.
Minimizing the combined loss accelerated the training of M1
as well as enhanced the performance of M0.

Next, we investigated the d-vector extraction module of the
proposed model learned from the speaker identification datasets
to see if it was still useful in speaker verification tasks. For this
investigation, we sampled genuine pairs and impostor pairs at
1:1 ratio from each group, as explained in the previous subsec-
tion. We did not sample impostor pairs across genders to avoid
trivial instances. Table 1 presents the results for two databases
by comparing the error rates of the Siamese model after train-
ing forty thousand iterations without pre-training with the two
fine-tuned models, each of which reused the weights obtained
after pre-training thirty thousand iterations of M0 and M0.5, re-
spectively. Note that an iteration for pre-training takes less pro-
cessing time than an iteration for training the Siamese network,
because the Siamese network evaluates the activations of both
inputs in a pair.
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(a) TIMIT baseline ( =0)
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Figure 4: Speaker identification results of the proposed models
with respect to λ. The x-axis signifies the number of the training
iterations, and the y-axis signifies the test classification error
rate in log scale.

The results show that the fine-tuned models outperformed
the Siamese model without pre-training, which is in line with
[7, 25]. Our results are similar to those of the small training
set experiment in [3] rather than those of the large training set
experiment in the same paper. These together imply that the per-
formance of the Siamese model is more sensitive to the number
of speakers in training dataset than the fine-tuned models. In ad-
dition, the fine-tuned model that reused M0.5 was better among
the fine-tuned models for both databases, which confirms the
effectiveness of the proposed method.

4. Conclusion
In this paper, we presented a tractable and effective method for
training speaker embedding networks by minimizing an addi-
tional loss based on embedding similarities. The experiments
showed that our model outperformed the fully connected base-
line network model for speaker identification. For speaker ver-
ification, the proposed method achieved better results than the
model that fine-tuned the baseline classifier or the original d-
vector approach [2], and outperformed the model based on the
Siamese network, which is a simplified version of the end-to-
end approach [3]. Furthermore, the data augmentation was es-
sential when the speaker labeled instances of utterance-level in-
put were not sufficient enough to learn deep representation.
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