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Abstract 
This study follows up on our pioneering work in designing a 
Pneumatic Bionic Voice (PBV) prosthesis for larynx amputees. 
PBV prostheses are electronic adaptations of the traditional 
Pneumatic Artificial Larynx (PAL) device. The PAL is a           
non-invasive mechanical voice source, driven exclusively by 
respiration and with an exceptionally high voice quality. 
Following the PAL design closely, the PBV prosthesis is 
anticipated to substitute the medical gold standard of voice 
prostheses by generating a similar voice quality while 
remaining non-invasive and non-surgical. This paper describes 
a statistical approach to estimate the excitation waveform of the 
PBV source using the PAL as a reference. A Gaussian mixture 
model of the joint probability density of respiration and PAL 
voice features is implemented to estimate the excitation 
waveform of the PBV. The evaluation on a database of more 
than two hours of continuous speech shows a close match 
between !" pattern and mel-cepstra of the estimated PBV source 
and the PAL. When used to re-synthesize the original speech, 
the intelligibility of the PBV speech remains high and is scored 
7.1±0.4 compared to 7.9±0.15 of the original PAL source. 
Index Terms: Bionic Voice, artificial larynx, laryngectomy, 
pneumatic larynx, voice synthesis 

1.! Introduction 
Total laryngectomy is the surgical removal of the larynx due to 
cancer which leads to a lifetime of voice-loss. Despite the 
emergent progress in many fields of bionics, a functional Bionic 
Voice solution still does not exist for laryngectomy patients. In 
a source-filter model of speech generation, a Bionic Voice 
prosthesis substitutes only the voice source and provides the 
voice generation function of the missing vocal folds for the 
patient. The patient next shapes this artificial source excitation 
into speech by moving their face and lips muscles. 

Among available solutions to generate voice after the 
laryngectomy, the medical gold standard of Tracheoesophageal 
(TE) voice prosthesis [1] and the Pneumatic Artificial Larynx 
(PAL) devices [2] continue to generate a superior voice quality 
and outperform other electronic voice prostheses including the 
Electrolarynx [3] and silent speech interfaces [4] both in terms 
of intelligibility and naturalness [6–13]. The gold standard of 
TE voice prosthesis is a plastic valve placed surgically inside 
the throat which subjects the patient to infection bio-hazards 
[1]. The PAL is specifically of interest as a non-invasive 
respiratory driven, mechanical voice source with an 
exceptionally high voice quality [2, 5-8]. When a laryngectomy 
patient loses their larynx, an opening in the neck (stoma) is 
generated for them to breathe. The PAL is placed externally 

between this stoma and the mouth and is driven by the 
variations of the pressure at these two points. In that sense, the 
PAL is essentially a mechanical model of human larynx with a 
fixed pair of vocal folds, driven exclusively by respiration, 
which generates the excitation source signal of the speech. 
Figure 1 shows the signal flow from respiration to PAL source 
excitation when a patient uses the PAL as a voice prosthesis.  

The PAL holds strong advantages against the gold standard 
of TE prosthesis by being non-invasive, having a clearer voice, 
less noise and higher intelligibility levels [2, 5,7-11]. Yet, the 
PAL has limited prevalence due to its cumbersome design. The 
Pneumatic Bionic Voice (PBV) is proposed as an electronic 
adaptation of the traditional PAL to eliminate its shortcoming 
while using voice conversion to mimic its voice generation 
function [12]. Hence, the PBV is expected to substitute the 
existing gold standard by producing a voice quality similar to 
the PAL while remaining non-invasive and non-surgical. 

To design a PBV source, mimicking the PAL’s performance, 
we need to answer two questions:1) how to control the onset and 
offset of the PBV source similar to the PAL, 2) how to estimate 
the voice generation function of the PAL driven by respiration and 
generate a similarly high voice quality for the PBV source? We 
tried answering the first question in our previous work [12]. This 
study aims to answer the second and implements a statistical 
framework to estimate the PAL source excitation generation from 
respiration. A respiration to voice conversion system is designed 
based on two major statistical conversion approaches [13, 14]. The 
system is trained and tested on a dataset of voice and respiration, 
recorded from a laryngectomy patient using the PAL to speak. 
Next, objective and subjective evaluation of the method is 
performed through re-synthesizing the speech signal, substituting 
the estimated PBV source waveform with the original PAL.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Signal flow of a laryngectomy patient using 
the PAL to speak. The patient’s respiration p(t) drives 

the vibrations of the PAL reed and generates the source 
excitation signal e(t). When transferred to the oral 

cavity via a tube, e(t) excites the vocal tract and 
generates the speech signal s(t). 
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2. Statistical approach for estimation of PAL 
source excitation 
To Estimate the PAL source excitation from respiration signal, 
the general statistical voice conversion (VC) framework [14] is 
employed. In a traditional VC system, the speech waveform of 
one speaker is converted to the speech of the other. Hence, the 
feature sets of choice at the two sides of the conversion are the 
same. Here, a slow varying respiration signal at one side of the 
conversion, should be converted to the feature sets of a PAL’s 
excitation voice source at the other. So, in addition to the choice 
of the statistical conversion framework, careful consideration 
has to be made in deciding which features should be extracted 
from the respiration and PAL voice source signals.  

2.1. A VC framework to convert respiration to PAL 
source excitation 

This study employs the framework of using Gaussian Mixture 
Models to convert a trajectory of features of the source 
(respiration signal) to the target (PAL excitation waveform). 
Considering the PAL as a black box, with respiration signal 
𝑝(𝑡) as the input and the PAL excitation waveform 𝑒(𝑡) as the 
output, the underlying mapping function 𝑒 = 𝑓(𝑝) is estimated 
as follows. A trajectory (time sequence) of the features of the 
respiration (𝑝) and PAL voice (𝑒) are shaped. Given 𝑃. and 𝐸. 
as the 𝐷1, 𝐷2-dimensional respiration and PAL voice feature 
vectors at frame t, respectively, the trajectories are defined as: 

𝑷 = [𝑃56	𝑃86, . . . 𝑃.6	, … 𝑃𝒯6]6, 𝑬 = [𝐸56	𝐸86, … 𝐸.6, … 𝐸𝒯6]6. 
The notation	.6denotes transposition of a vector. 

A Gaussian Mixture Model is trained to describe the joint 
probability distribution of these trajectories. Next, the joint 
probability density of the source and target feature vectors          
	𝒁. = [𝑷6, 𝑬6]6 is described by a GMM as: 

ℙ 𝒁. 𝜆 = 	 𝜔C𝒩𝑴
CF5 (𝒁.; 𝜇C

I , ΣC
I )  (1) 

with 𝒩(. ; 𝜇, Σ) being a normal distribution (with 𝜇 and Σ) and 
𝜆 being the parameter set of the GMM which consists of 
weights, mean vectors and covariance matrices of each mixture 
component (with index 𝑚) and a total of M mixture 
components. The parameters of the GMM are fitted to the 
training dataset of respiration and voice feature trajectories 
using EM algorithm [15].  

Once trained, to perform the conversion, given any new 
respiration feature vector 𝑷, a maximum likelihood approach 
determines the corresponding 𝑬 using on the estimated joint 
probability function. 
𝑬 =	argmax ℙ 𝑬 𝑷, 𝜆    (2) 

In the conversion process, the converted voice source feature 𝑬 
is estimated from the respiration features trajectory 𝑷 in the 
same manner as maximum likelihood estimation of parameter 
trajectories with the GMM [14]. 

2.2. Feature selection from respiration and voice signals 

The PAL excitation source can be described using three 
components of spectral envelope, 𝑓" and aperiodicity, expected 
with the World vocoder [16]. The spectral envelope, can be 
further parameterized into the 1-24th mel-cepstral coefficients. 
These features are not however applicable to extract 
information from the respirations signal. Respiratory signals 
that drive the PAL are slow varying with a bandwidth of                          
0-50 Hz, sampled at 1 kHz.  

To propose a suitable feature set for these, the most 
informative feature sets of the slow varying myoelectric muscle 
activity signals [17-19] are consulted. These features have 
already proven feasible in estimating the fundamental 
frequency of a Bionic Voice source using myoelectric signals 
[20]. They had also proven effective in onset and offset 
detection of the PBV source from respiration.  

The PAL voice generation is known to be influenced by 
pressure variations at its two ends, namely the pressure inside the 
mouth 𝑝C(𝑡), at the stoma 𝑝L(𝑡) and also majorly by the 
difference of the two (∆𝑝(𝑡) = 𝑝L 𝑡 − 𝑝C(𝑡)) [12]. Hence, 
initially, a subset of effective myoelectric features [19] was 
extracted from these three signals (∆𝑝(𝑡), 𝑝L 𝑡 , 𝑝C 𝑡 ). Next, a 
feature selection was applied to rule out weak features from this 
subset, based on their performance in estimating the fundamental 
frequency (𝑓") of the PAL source. To perform the feature 
selection, a linear regression model was fitted to different subsets 
of these features to estimate 𝑓". The criteria for performance 
evaluation was the correlation coefficient (𝑅(𝑓", 𝑓")) with 𝑓"	and 
𝑓"	being the estimated and intended 𝑓". The subsets of features 
with minimum 𝑅(𝑓", 𝑓") were eliminated. This criterion revealed 
the following time and frequency domain features as features of 
choice for the respiration signal in Eqs. (3)-(9). In these series, 
Eqs. (3)-(5) were used to extract features from individual stoma 
and mouth signals (𝑝C(𝑡) and 𝑝(𝑡)). Yet all of the Eqs. (3)-(9) 
were applied to extract features from the pressure difference 
signal ∆𝑝(𝑡).  

Let 𝑝(𝑡) to represent any of the three respiration signals 
(∆𝑝 𝑡 , 𝑝L 𝑡 , 	𝑝C 𝑡 ) which affect the PAL voice generation. 
To estimate time domain features, 𝑝(𝑡) is segmented into 
overlapping frames of length N samples. For each frame  𝑝., the 
time domain features are: the mean absolute value (MAV): 

𝑀𝐴𝑉 = 5
S

𝑝TS
TF5 	                   (3) 

the root mean square (RMS) value:  

𝑅𝑀𝑆 = 5
S

𝑝T 8S
TF5     

(4) 

waveform length (WL): 

𝑊𝐿 = 5
S

∆𝑝TS
TF5   where ∆𝑝T = 	 𝑝T − 𝑝TX5 (5) 

the simple square integral (SSI): 

𝑆𝑆𝐼 = 𝑝T 8S
TF5    (6) 

the Modified Mean Absolute Value is also a time domain 
feature which uses a non-uniform window:  

𝑀𝑀𝐴𝑉 = 5
S

𝑤T 𝑝TS
TF5   

𝑤T = 	
1					𝑖𝑓						0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁	
0.5																												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

(7) 

and the autocorrelation between adjacent frames 

ℜ 𝑝h, 𝑝hi5 = 	 5
S

𝑝T
h. 𝑝T

hi5S
TF5 	  (8) 

where 𝑝h, 𝑝hi5 are the 𝐽th and (𝐽 + 1)th frames of 𝑝(𝑡) with the 
length of N. 

In the frequency domain the Modified Frequency MedDian 
(MFMD) (9) passed the feature selection criterion.  

𝑀𝐹𝑀𝐷 = 1/2	 𝐴no
nF5   (9) 

where 𝐴n is the amplitude of the respiration signal spectrum P(f) 
at frequency bin j and M is the total number of frequency bins. 
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2.3.! Implementation details 

Figure 2 summarizes the proposed respiration to PAL source 
excitation conversion system. The PAL’s driving pressure signals 
()C$*&, )L$*& and their difference: M)$*&) are the input and the 
PAL’s generated voice (PAL source excitation e$*&) is the intended 
output of the conversion system. The core framework of the system 
has been adopted from the statistical unvoiced speech enhancement 
method [13]. The PAL intended output e$*&, is analysed and 
synthesized using World [16]. To re-synthesize e$*& using 
respiration input signals, parameters of aperiodicity the !" and mel-
cepstrum coefficients of e$*&, need to be estimated. In the training 
phase, two GMMs are trained for !" and mel-cepstrum estimation 
using joint probability density of respiration and voice feature 
trajectory (1). The trained GMMs are used in the test phase to 
estimate !" and mel-cepstrum coefficients of e * , using respiration 
features and to resynthesize the estimated PAL excitation. The 
aperiodicity parameter is set to constant in this synthesis.  
  

 
 
 
 
 
 
 
 
 
 

 

 

 
 

 
 

 
 
 
 

Figure 2: The GMM based respiration to PAL 
excitation source conversion. 

3.! Methodology of experimental evaluation 

3.1.! Experimental conditions 

The recording condition and the pre-processing of the data was 
similar to our previous study [12]. A laryngectomy patient who 
is a proficient user of the PAL device sat in a quiet room and 
used the PAL as his voice prosthesis to generate continuous 
speech. The pressures inside his mouth )C$*& and in front of his 
stoma )L$*& were recorded using pressure sensors connected to 
two thin plastic tubes placed intra-oral and in front of the stoma. 
These, were the inputs of the respiration to PAL conversion 
system. A microphone was implanted inside the PAL source to 
record the PAL excitation source signal + * 7as the intended 
PAL output. A second microphone recorded the patient’ PAL 
speech f *  for evaluation purposes. All audio and respiration 
channels where recorded simultaneously and were time-aligned 
while recording. The audio (f * 79 +$*&& and respiration signals 
()L$*&, )C$*&) were recorded at 1 kHz and 16 kHz respectively.  

More than two hours of continuous speech and respiration 
were recorded. The respiration recordings were low-pass 
filtered to preserve the 0-40 Hz and to eliminate the PAL source 
vibrations (which had a centre frequency of 110±30 Hz) [12]. 

Next, they were segmented into frames of 10 ms length, with 5 
ms of overlap. For each respiration frame the feature sets in 
section 2.2 were extracted and a trajectory of features for 5 
frames before and after the current frame was generated (25 ms 
lead and lag time). The respiration feature space was subjected 
to the Principal Component Analysis (PCA) to reduce the 
dimensions of the space [21] while maintaining 99.9% of the 
variance of the respiration feature space. The target PAL voice 
was also segmented into windows of 25 ms length with a hop 
size of 5 ms. The target mel-cepstra and target !" were 
calculated using World [16] and Reaper [22], respectively.  

The GMMs for !" and mel-cepstrum estimation were 
composed of 10 and 14 Gaussian components respectively. The 
training was performed on a random selection of 80% of the 
speech utterances [15]. The trained GMMs were then used on 
the 20% untrained data (different utterances from the training 
set) to estimate the PAL excitation source. 

3.2.! Evaluation framework 

Three criteria were proposed to evaluate the performance of the 
system in estimating !" and mel-cepstra of the intended PAL 
source or as a whole. The !" estimation was evaluated based on 
the correlation coefficient O$!"9 !"& of the estimated !"7and 
target !", in accord with previous works [23, 24]. The criterion 
for evaluation of mel-cepstra was the mel-cepstral distortion 
between the estimated and target:  

pqrst7 uv , []mrw[] ^ $KxT
2 N KxT

2 &878y
TF5    (10) 

with KxT
2 , KxT

2  being the \th coefficient in the target and 
estimated mel-cepstra respectively. The PAL reed does not 
vibrate in unvoiced phonemes as the pressure inside the mouth 
becomes large [25] and the pressure difference between stoma 
and mouth $M)) is too small to excite the reed. Hence both !" and 
mel-cepstra evaluations are performed for voiced speech only. 

To evaluate the system as a whole, the estimated PAL 
source should be used to re-synthesize a copy of the speech 
signal. To do this, ideally the PAL source has to be applied to 
the vocal tract filter of the patient to generate the speech signal. 
But how should we estimate the vocal tract filter in this 
scenario? Our recoded dataset had an interesting advantage 
which enabled us to effectively approach this. Two 
microphones recorded both the original PAL voice source + *  
and the resulting speech signal f *  which were time aligned. 
In the frequency domain, this provides the vocal tract function 
by a division of the short-term Fourier spectrums 
R ! ,S(f)/E(f) where V(!& is the frequency response of the 
vocal tract and S(f), E(f) are the corresponding frequency 
spectrum of the speech and PAL source. This division turns into 
a subtraction in the log-frequency domain of mel-cepstra as:  

KxT
z , KxT

{ N KxT
|  (11) 

with, KxT
{  and KxT

|  being the \th mel-cepstrum coefficient of 
the time aligned PAL speech and PAL source respectively and 
KxT

z  the \th mel-cepstrum coefficient of the vocal tract. 
Substituting the converted PAL source +$*& for original7+$*& in 
(11), the mel-cepstra of the converted speech signal f *  is 
calculated in Eq. (12). The converted speech signal f * was 
then resynthesized using the calculated mel-cepstra and the 
estimated !" of the converted source with World [16]. 

KxT
L , KxT

| k KxT
z  (12) 

GMM for mel-cepstra

Figure 2: The GMM based respiration to PAL 
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4. Analysis of the results 
Multiple probes of training/test sets were used to train and 
evaluate the system. In each probe, the conversion system was 
trained on 40 respiration/PAL voice source recordings                   
(45 seconds each) and was tested on 10 recordings, which were 
not included in the training set. The average correlation 
coefficient, 𝑅 𝑓", 𝑓" , between multiple probes shows a close 
match of 91.96±1.3% between estimated and target 𝑓".             
Figure 3.a) demonstrates a sample comparison between the 
estimated and target 𝑓". Figure 3.b) shows the corresponding 
respiration signals that have been used to estimate 𝑓" together 
with the target PAL voice source signal (𝑒(𝑡)) from which the 
target 𝑓"	has been extracted. As observed in this figure, the 
estimation is performed only for voiced speech denoted by a 
precise auto-generated voiced/unvoiced label [12]. The second 
GMM estimated the mel-cepstra of the PAL voice from 
respiration. The performance of this GMM is evaluated using 
the MelCD (10) between the estimated and target melcepstra. 
The average MelCD between all probes was 4.02±0.14 dB. 

 

Figure 3: a) Comparison of estimated and target 𝑓" using the 
GMM b) Underlying values of respiratory pressure 𝑝L, 
𝑝C.	The respiration recordings are time aligned with 

recordings of the PAL excitation source waveform (blue).  

Next the PAL speech signal was re-synthesized by 
substituting the estimated PAL excitation source with the 
original using Eq. (4). Figure 4 compares the spectrogram of the 
converted and original PAL speech. As observed in this figure 
the converted speech shows close similarities to the original.  

A listening test was also performed to evaluate the 
performance of the system in estimating the voice source when 
used to re-synthesize the original PAL speech signal. Ten naïve 
listeners (native English speakers similar to the laryngectomy 
participant) were enrolled to evaluate the re-synthesized speech 
both in terms of quality and intelligibility. For both tests, the 
listeners were initially familiarized with 4 recordings of PAL 
speech (45 s each and not included in the test material). For the 
intelligibility test, the listeners were presented with recordings 
of original and re-synthesized speech in shuffled order and were 
asked to transcribe these. Fifty pairs of original and re-
synthesized sentences were presented. The percentage of 
correctly identified words over the total number of words in 
each sentence was calculated and converted on a scale of 0 to 
10 (with 10 showing maximum intelligibility). The overall 
Intelligibility score was averaged between all sentences for all 
listeners. For quality assessment, a Mean Opinion Score (MOS) 
was used and 25 pairs of re-synthesized and original PAL 
sentences were compared by the listeners, and the re-
synthesized version was scored from 1 to 5 (with 5.0 being the 
same quality as the original PAL). 

 

Figure 4: The spectrum of the PAL speech signal:          
a) original recording using the PAL source b) Re-

synthesized version using the estimated PBV source. 

The original PAL speech received an intelligibility score of 
7.91±0.15 while the score for the re-synthesized version was 
7.14±0.4. For quality assessment, the re-synthesized speech got 
a score of 3.26±0.1 compared to the original 5.0. The decay in 
quality was mainly attributed to the inaccuracies in substituting 
the mel-cepstra to re-synthesize the speech. The PAL source 
estimation was only for voiced phonemes. Hence, to 
resynthesize the unvoiced segments, we copied the mel-cepstra 
of the original PAL speech. The inaccuracies in the transition 
between estimated and copied mel-cepsta for voiced and 
unvoiced phonemes were perceived by listeners as a decay in 
the quality. However, this situation will not exist when the PBV 
source will be tried on the patient and the estimated source is 
superimposed by the natural respiration airflow of the patient to 
generate both voiced and unvoiced phonemes. The high 
intelligibility score of the PAL (7.9±0.15) compliments its 
strengths as being the reference of the design of Bionic Voice 
and is in accord with previous studies reporting similar levels 
of intelligibility [2, 5, 7-11]. The re-synthesized speech using 
the estimated PAL source also maintains less than 8% drop in 
the intelligibility. This, together with an accuracy of 91.96±1.3 
for 𝑓" prediction and the MelCD of 4.02±0.14 dB between 
estimated and target mel-cepstra, advocates the strengths of the 
proposed method to estimate the PAL excitation waveform 
from the respiration. 

5. Conclusions 
This study defines a novel framework which effectively 
estimates the excitation waveform of a Pneumatic Artificial 
Larynx (PAL) from respiration signals. Such framework will be 
employed in designing Pneumatic Bionic Voice (PBV) sources 
[12]. The PBV has tremendous potential to replace the existing 
gold standard of TE voice prostheses. Mimicking the PAL 
excitation, provides the PBV with a much wider range of 𝑓" 
patterns. The PBV is also expected to step beyond the high 
quality of the PAL and sound more natural by applying VC 
frameworks to paired datasets of PAL and natural speech. 
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