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Abstract
Security of Automatic Speaker Verification (ASV) systems
against imposters are now focusing on anti-spoofing counter-
measures. Under the severe threat of various speech spoof-
ing techniques, ASV systems can easily be ’fooled’ by spoofed
speech which sounds as real as human-beings. As two effective
solutions, the Constant Q Cepstral Coefficients (CQCC) and the
Scattering Cepstral Coefficients (SCC) perform well on the de-
tection of artificial speech signals, especially for attacks from
speech synthesis (SS) and voice conversion (VC). However, for
spoofing subsets generated by different approaches, a low Equal
Error Rate (EER) cannot be maintained. In this paper, an adap-
tive weighting based standalone detector is proposed to address
the selective detection degradation. The clustering property of
the genuine and the spoofed subsets are analysed for the se-
lection of suitable weighting factors. With a Gaussian Mixture
Model (GMM) classifier as the back-end, the proposed detec-
tor is evaluated on the ASVspoof 2015 database. The EERs of
0.01% and 0.20% are obtained on the known and the unknown
attacks, respectively. This presents an essential complementa-
tion between the CQCC and the SCC and also promotes the
future research on generalized countermeasures.
Index Terms: automatic speaker verification, anti-spoofing
countermeasures, CQCC, SCC, adaptive weighting, clustering

1. Introduction
The Automatic Speaker Verification (ASV) systems take the
task of examining the authenticity of any claimed identity [1].
Several commercial applications of ASV have been applied to
security check platforms such as the bank e-transaction and the
physical access control [2]. Recently, besides the low-cost and
flexibility of ASV systems, there has been a significant increase
in the level of unauthorized spoofed speech attacks [3]. Gen-
erally, four kinds of spoofing techniques are employed by im-
posters: impersonation, replay, speech synthesis (SS) and voice
conversion (VC) [4].

In [5], the vulnerability of ASV systems to spoofing attacks
is assessed and two essential approaches for anti-spoofing are
introduced. One choice is to adjust the fundamental framework
of ASV systems with a more robust mechanism. While another
way is to apply dedicated external anti-spoofing countermea-
sures, especially ones with more generalized detection capabil-
ity. The negative impacts caused by various spoofing attacks
can be effectively reduced and, probably, eliminated.

Currently, in response to the risk of spoofing attacks, many
researchers have begun to develop useful methods for anti-
spoofing. In 2015, the first online ASV spoofing and counter-
measures challenge was held. This special session focused on
offering valid solutions to defend against the synthetic speech,
including both speech synthesis and voice conversion [3].

In our previous work, the compressed sensing (CS) [6]
framework was combined with a high-dimensional (HD) fea-
ture [7] and the proposed CS-HD features gained an Equal Er-
ror Rate (EER) of 0.01% for the known attacks [8]. Inspired
by the combination of the cochlear filter cepstral coefficients
and change in instantaneous frequency (CFCCIF) [9], which is
the winning submission of the first challenge, a feature named
Constant Q Cepstral Coefficients (CQCC) was proposed and
an EER of 0.26% on the evaluation set was achieved [10].
The promising achievement of the CFCCIF and the CQCC had
shown the importance of the filter-banks and the resampling
process that were applied. In [11], a hierarchical scattering
decomposition was employed to produce another speech fea-
ture referred to as Scattering Cepstral Coefficients (SCC). The
first level coefficients of the SCC performed equivalently to the
CQCC and the classical Mel-Frequency Cepstral Coefficients
(MFCC). With this feature, the performance metric EER of the
known subsets in the evaluation set reached as low as 0.03%.

However, released results in [11] demonstrates that it is
hard for the CQCC and the SCC to perform an undifferenti-
ated detection across all the spoofing subsets. The performance
of specific subsets degrades with varying levels and this leads
to an unstable anti-spoofing efficiency. For example, the detec-
tion performance of CQCC on the subset S10 is relatively better
than SCC. The subset S10 is generated from the unit-selection
based speech synthesis. The dynamic coefficients of CQCC can
capture the artifacts caused by unnatural boundaries between
units in a speech signal. While the analogous counterpart to dy-
namic coefficients are not implemented for SCC, which leads
to a subdued detection performance on the subset S10. Con-
versely, for the other subsets, the SCC possesses a stable and
outstanding detection level. This is because that the numerous
orders of SCC can cover the full-scale of the frequency spec-
trum. Artificial details in the low and high frequency bands can
be discovered by the SCC. The most significant contribution of
this paper is thus the proposal of an adaptive weighting frame-
work with an entirely new clustering approach to exploit the
complementary behavior of CQCC and SCC.

In the proposed framework, the weighting factors are esti-
mated by the evaluations on all the development subsets. By a
voting process, the pairs of weighting factors and clusters are
united. After that, the known and unknown speech signals in the
evaluation set can be mapped into the labeled clusters. Then the
allocated weighting factors are used afterwards for the scores
calculation in the following GMM back-end.

The rest of the paper is organized as follow. A brief in-
troduction to the CQCC and the SCC features is provided in
section 2. The detailed concepts and framework are described
in section 3. In section 4, the experimental results and relevant
discussion are given. Finally, a conclusion of this paper and
possible future works are detailed in section 5.
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2. Adaptive weighting framework and
clustering approach

Herein the motivation for the application of the weighting
framework is described. The discussion starts with a treatment
of original CQCCs and SCCs before the introduction to the pro-
posed adaptive weighting scheme and the clustering approach.

2.1. CQCC and SCC complementary features

In [10], the authors analyzed the effectiveness of the time-
frequency representation and the constant Q transform to speech
and music signals. Comparing with the conventional cepstral
analysis, a conversion from geometric series space to linear
space was adopted to match the equal-tempered scale corre-
sponded to a bin spacing. The orthogonality of the discrete
cosine transform (DCT) basis was preserved by performing a
linearisation of the frequency scale of the constant Q transform.
The extraction of the CQCC applied a polyphase anti-aliasing
filter and a spline interpolation to complete the resampling of
each signal with a uniform sampling rate. Actually, CQCCs are
extracted in a traditional manner like MFCCs but with a new
uniform resampling process. Due to the adjustment of the fre-
quency resampling, the CQCC achieves an impressive perfor-
mance on the ASVspoof 2015 database.

While in [11], the scattering spectrum [12] with the same
nature as cochlear filters was used for the creation of the SCC.
In addition to that, the close relation to the modulation spectra
also contributed to enhance the spoofing detection ability. With
a hierarchical structure based on wavelet filter-banks and mod-
ulus operators, raw speech signals were transferred to scalo-
grams of different depth. Then scattering coefficients at each
level can be estimated by windowing and computing the aver-
age value. Logarithms of the scattering coefficients from several
levels were concatenated to build a feature vector. By taking a
DCT of this vector, the SCC was eventually collected.

From the detection results of the evaluation set in [10] [11],
it is shown that a lower EER can be reached on the subset S10
compared to the SCC which, conversely, takes the lead to the
other nine subsets. Specifically, the CQCC captures more in-
formation of artifacts hidden in unit boundaries than the SCC
and this brings on a significantly decreased EER in detecting
unit-selection based spoofing, S10. For S10 using CQCC the
EER is 1.07% to be compared to SCC with an EER of 3.94%
[11]. By contrast, an analysis of the F-ratios for the first three
levels of the SCC reveals that the forged components in both the
low frequency and the high frequency region are discriminative.
When the first several levels are used in conjunction, the accu-
racy of the detection increases greatly. For the subsets S1 to S9,
the EER is 0.02% with SCC compared to CQCC with EER of
0.17% [11].

These results confirm the complementary performance of
CQCC and SCC and present the question as to whether these
can be successfully fused. We propose an approach to do just
this as described in the next section.

2.2. Proposed framework

In this work, the dataset used is the ASVspoof 2015 Corpus [3].
The detailed information of this database is shown in Table 1.
Three sets are included consisting of genuine (human) speech
and spoofed speech. No channel or background noise effects
are added. There are 10 types of spoofing attack, namely S1 to
S10. In all three speech sets, the S1-S5 are set as known attacks
and the S6-S10 are the unknown attacks. Note that the spoofed

speech in the training and development sets only consist of the
five known attacks. While the spoofed speech in the evaluation
set are made up of unseen known attack speech data and five un-
known attack speech data. The database protocol motivates the
design of a clustering method for the task of weighting factors
assignment. The training and the development sets are prepared
for training and tuning the detector while the evaluation set is
for testing.

Table 1: Statistics of the ASVspoof 2015 database

Subset #Speaker #Utterances

Male Female Genuine Spoofed

Training 10 15 3750 12625
Development 15 20 3497 49875
Evaluation 20 26 9404 ≈ 200000

Figure 1 illustrates the scheme of the proposed adaptive
weighting framework. The CQCCs and the SCCs of the raw
speech signals from all the sets in ASVspoof 2015 corpus are
extracted with the same settings in [10] [11]. Note that the voice
activity detection (VAD) is discarded here to take the silent re-
gions into consideration. In the step of weighting factors se-
lection, the training and development sets are utilized for the
tuning of weighting factors αi (i = 1, 2, . . . , 5) for five spoof-
ing categories and factor α0 for the human subset provided in
the development protocol, thus we have six weighting factors.
The weighting formula is shown as below:

final score = αi · scoreCQCC + (1 − αi) · scoreSCC (1)

where the scores are represented by the log-likelihood ratio
(LLR). For all the subsets in the development set, we search
over all the available values of weighting factors αi ranging
from 0 to 1. When the EER is minimized by a certain weighted
score, the associated weighting factor is fixed for that subset.

Figure 1: Scheme of the proposed adaptive weighting frame-
work.

To arrange a weighting factor for every speech in the evalu-
ation set without any prior knowledge, a new clustering method
is proposed in this paper. The flowchart of the clustering pro-
cess is shown in Figure 2. After the extraction of the CQCC, the
cepstral mean and variance normalization (CMVN) is applied.
Then two universal background models (UBM) are trained for
human and spoofed speech respectively. Following this, the
GMM mean supervectors are estimated by the EM algorithm.
To reduce the computation complexity and acquire a more com-
pact representation, the locality preserving projections (LPP)
[13] is employed. The newly generated short vectors are named
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Figure 2: Clustering process flowchart.

the M-vectors and are followed by the K-means algorithm for
building clusters.

With a reasonable set of parameters, a total of six clusters
ci (i = 0, 1, . . . , 5) are created with the speech signals from
the training and the development sets. After a voting opera-
tion, each cluster is labeled as one of the five known attacks
or genuine speech based on the dominant speech representing
that cluster. The labeled clusters are denoted as chuman and
cs1, cs2, . . . , cs5. All the six weighting factors and clusters are
matched as pairs (α0, chuman) , (α1, cs1) , . . . , (α5, cs5). The
centroids of six clusters are recorded for the subsequent assign-
ment of the new data point from the evaluation set. By calculat-
ing the distance to each cluster center, every new speech from
the evaluation subsets is enrolled to an existing cluster. Con-
sequently, the mapping from 11 subsets (one for the genuine
subset and 10 for subsets S1-S10) to 6 trained clusters (chuman

and cs1, cs2, . . . , cs5) are realized. Therefore, each undetected
signal in the evaluation set is allocated with a weighting factor
used for the scores calculation. All the final-scores are assem-
bled to estimate the detection EERs.

In this framework, the weighting factors are assigned adap-
tively with no need for the prior knowledge of the evaluation
set. This is based on the clustering process and the hypothesis
that the latent artifacts across different sets are with similar na-
tures and traits. The experimental results and relevant analysis
are given in next section to assess the validity of the proposed
framework.

3. Experimental results
3.1. Experiments settings

3.1.1. Feature extraction

The original CQCC features are extracted by an open-source
MATLAB toolkit (http://audio.eurecom.fr/content/software).
The parameters are the same as the configuration in [10]. The
maximum and the minimum frequency in the constant Q trans-
form are set as Fmax = Fsample/2 and Fmin = Fmax/2

9 re-
spectively. The Nyquist frequency of the database is Fsample =
16kHz. The number of octaves is 9 and the number of bins per
octave B is set to 96, which results in a time shift of 8 ms. Pa-
rameter γ is set to γ = Γ = 228.7 ∗

(
2(1/B) − 2(−1/B)

)
.

d = 16 is the re-sampling period. The dimension of the CQCC
static coefficients is set to 19 with appended C0 which makes
its length is 20. Acceleration coefficients, namely delta-delta
(∆∆), are calculated and used in isolation. Experiments later
are performed with only the CQCC acceleration coefficients
(CQCC-A).

The extraction of the scattering coefficients is com-
pleted with the publicly available toolbox Scattering
(http://www.di.ens.fr/data/scattering/). The first three lev-
els of coefficients are concatenated together. A DCT is

performed and the first 60 coefficients are retained as the final
scattering cepstral coefficients. The voice activity detector
applied in [11] is discarded in this work.

3.1.2. Parameter settings

In the clustering stage, the GMM-UBM system is from the
MSR Identity Toolbox v1.0 [14]. All the GMMs in this work
utilize 512 mixture components. The LPP is implemented by
the open-source Matlab Toolbox for Dimensionality Reduction
(https://lvdmaaten.github.io/drtoolbox/). The dimension of the
created vectors followed by k-means clustering algorithm is set
to 20.

All the scores of the detector are represented by the Log-
likelihood ratio (LLR). The EER is defined as the operating
point on the Detection error tradeoff (DET) curve, where the
false acceptance rate (FAR) is equal to the false rejection rate
(FRR). A lower EER indicates a better detection performance.

3.2. Results and analysis

Figure 3 gives the clusters distribution of the evaluation set in
the ASVspoof 2015 corpus and Figure 4 demonstrates the re-
lationships of the six labeled clusters. These visualizations are
produced by the t-distributed Stochastic Neighbor (t-SNE) em-
bedding algorithm applied onto the extracted M-vector of each
utterance.

Figure 3: Cluster distribution of the evaluation set

Comparing Figure 3 with Figure 4, it is obvious that there is
a correlation of the five unknown attacks with the known attacks.
It is also noted that S3 and S4 are overlapped in most parts be-
cause they are generated by the same spoofing technique with
different amounts of data. And the subset S10 appears to over-
lap the vast majority of the human subset. Spoofed speech of
subset S10 are fabricated by the unit-selection synthesis. The
sub-words units are from databases of natural speech. This is
the main reason that most published spoofing detector systems
perform poorly in differentiating S10 from the human subset.
The result of the mapping in Figure 4 confirms our assumption
in section 2. That is, the spoofed speech in the evaluation set
across both known and unknown attacks contain similar infor-
mation to the known attacks in the training and development
sets. Given this condition, they can be re-clustered into the ex-
isting labeled clusters (e.g. known S2 and unknown S7 map to
known S2).
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Table 2: The EERs(%) of the development set and the evaluation set of the ASVspoof 2015 corpus.

Feature Development set Evaluation set

S1 S2 S3 S4 S5 Ave. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Known Unknown S1-S9 Ave.

CQCC-A [10] 0.01 0.17 0.00 0.00 0.12 0.06 0.01 0.11 0.00 0.00 0.13 0.10 0.06 1.03 0.05 1.07 0.05 0.46 0.17 0.26
SCC [11] 0.00 0.09 0.00 0.00 0.27 0.07 0.01 0.12 0.00 0.00 0.02 0.01 0.01 0.03 0.01 3.94 0.03 0.80 0.02 0.42
Proposed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.01 0.00 0.00 0.95 0.01 0.19 0.01 0.10

Figure 4: Visualization of the six labeled clusters

The testing results on the development set are given in Ta-
ble 2. The CQCC-A is defined as the CQCC acceleration coeffi-
cients. From the table it can be seen that the proposed adaptive
weighting scheme efficiently improves the detection accuracy.
And this also implies the adaptive selection of the weighting
factors is guaranteed.

Table 2 also shows the detection performance of the CQCC,
the SCC and our proposed score-level weighting framework.
The EERs of all the ten spoofing subsets are listed, appended
with averaged results of the known, the unknown, the subsets
S1 to S9 and the whole evaluation set. By comparison, all the
EERs of the proposed method are comparable or better than
those of the original features. The EERs of S1 to S9 are at
a stable low level ranging from 0.00% to 0.02%. It is worth
noting that the EER of the subset S10 is 0.95% which is an
improvement of 75.9% over the SCC feature and 11.2% over the
CQCC feature. This results in an impressive advancement on
the average performance with an overall EER of 0.10% which
is 61.5% better than the competing CQCC.

The selected weighting factors are listed in Table 3. For
clusters cs3 and cs4, the weighting factors can be any value
ranging from 0.00 to 1.00. This is because the original CQCC
and SCC features have already had a qualified detection perfor-
mance on these two subsets. Meanwhile, for cluster chuman the
range of optional weighting factors is limited. It typically sug-
gests a more elaborate weight allocation because of the different
detection capability of the original CQCC and SCC.

A generalized anti-spoofing countermeasure will be in great
demand for practical scenarios. The effectiveness of the pro-
posed adaptive weighting scheme can be treated as one of the
possible solutions to the generalization issue. Furthermore, due
to uncertain varieties and mixtures of spoofing attacks in real-
world environment, a generalized detector with only one anti-
spoofing strategy does not usually work consistently. The coun-
termeasures based on weighting or ensemble methods are en-

Table 3: List of the selected weighting factors

Clusters Weighting factors

chuman α0 = 0.54 ∼ 0.56
cs1 α1 = 0.00 ∼ 0.96
cs2 α2 = 0.43 ∼ 0.53
cs3 α3 = 0.00 ∼ 1.00
cs4 α4 = 0.00 ∼ 1.00
cs5 α5 = 0.66 ∼ 0.73

couraging ways to develop such generalized spoofing detectors.
Moreover, any extra data produced by new spoofing methods
based on Deep Learning (DL) should be supplemented into the
corpus to improve the cluster generation and weighting factors.

4. Conclusions
In this paper, a novel adaptive weighting framework for score-
level fusion of the spoofing detector is proposed. A new cluster-
ing method is also introduced for the analysis of the data struc-
ture. To address the degradation problem on individual speech
subsets, the original CQCC and SCC features are merged at the
score level. The weighting factors are chosen on the basis of the
clustering distribution of genuine and spoofed signals. Our pro-
posed weighting framework has been shown to provide a lower
overall EER on the ASVspoof 2015 database compared to either
CQCC or SCC alone. Furthermore, the analysis of the experi-
ments in this work also illustrates that a systematic integration
of diverse anti-spoofing methods is a promising strategy for a
more generalized countermeasure. Future work may be focused
on exploiting more potential combinations of anti-spoofing ap-
plications for speaker recognition and relevant areas.
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