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Abstract

Cross-lingual spoken language understanding (SLU) systems
traditionally require machine translation services for language
portability and liberation from human supervision. However,
restriction exists in parallel corpora and model architectures.
Assuming reliable data are provided with human-supervision,
which encourages non-parallel corpora and alleviate transla-
tion errors, this paper aims to explore cross-lingual knowledge
transfer from multiple levels by taking advantage of neural ar-
chitectures. We first investigate a joint model of slot filling
and intent determination for SLU, which alleviates the out-
of-vocabulary problem and explicitly models dependencies be-
tween output labels by combining character and word repre-
sentations, bidirectional Long Short-Term Memory and condi-
tional random fields together, while attention-based classifier
is introduced for intent determination. Knowledge transfer is
further operated on character-level and sequence-level, aiming
to share morphological and phonological information between
languages with similar alphabets by sharing character represen-
tations, and characterize the sequence with language-general
and language-specific knowledge adaptively acquired by sep-
arate encoders. Experimental results on the MIT-Restaurant-
Corpus and the ATIS corpora in different languages demon-
strate the effectiveness of the proposed methods.

Index Terms: spoken language understanding, cross-lingual,
multi-task, transfer learning

1. Introduction

Cross-lingual spoken language understanding (SLU) can be
achieved in a variety of ways, especially given the increasingly
available machine translation (MT) services, where no human
supervision is required and language portability could be facili-
tated. However, this paper assumes that reliable data are already
available without the restriction from MT systems. We focus on
the exploration of a neural architecture that facilitates slot filling
and intent determination for cross-lingual SLU.

Recent research commonly focuses on language portability,
where a large of semantically-annotated utterances in the source
language are available but the system is expected to be portable
to a target language instead. Architectures differ from where
MT systems take place, like “TrainOnSource” and “TrainOn-
Target” [1]. The first one translates utterances in target lan-
guages to the source language and trains models in the source
language, while the latter trains models in translated corpora
instead. Though fully automatic and portable, MT-based sys-
tems may be sensitive to translation noises. Several strategies
were further proposed to ameliorate such issue [2, 3, 4], e.g. the
adaptive training approach that utilizes both source and trans-
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lated data in the same source language for training [3, 4]. How-
ever, translated or aligned utterances may sacrifice fluency and
portability to non-parallel corpora. Another potential problem
comes from traditional model architectures with lack of scala-
bility to hierarchical knowledge transfer, where semantics and
pronunciation information may help.

In this work, we assume that reliable data are provided with
human-supervision, aiming to reduce effect of MT errors and
make it portable to non-parallel corpora. A joint neural archi-
tecture of slot filling and intent determination for SLU is first
introduced, expected to be scalable in cross-lingual transfer.

Slot filling is the key component of SLU aiming to obtain
semantic tags for each word in an utterance. While recurrent
neural networks (RNNs) are effective for sequence modeling
and have been widely adopted for slot filling [5, 6], an RNN
produces a locally normalized distribution over output labels,
suffers from the label bias problem similar to maximum entropy
Markov models and other locally normalized models [7, 8]. To
ameliorate the label bias problem, recent works [8, 9, 10, 11]
incorporate dependencies between semantic labels via the con-
ditional random fields (CRF) transition features. Another com-
mon problem that most systems with only word-level repre-
sentations encountered is the out-of-vocabulary (OOV) words
problem [12, 13]. Character-level representations have proven
to be effective for this issue in several tasks [12, 13, 14] as mor-
phology information that characters convey may be beneficial.

This paper investigates a general neural architecture for slot
filling to solve the above two challenging problems by combin-
ing both word-level and character-level representations, bidi-
rectional Long Short-Term Memory (BLSTM) and CRF to-
gether, similar to the model proposed for name entity recog-
nition (NER) [14]. We further explore joint training for poten-
tial benefits from correlations between the two tasks. Similar to
RNN based joint systems [9, 15, 16] trained under the frame-
work of multi-task learning, we additionally utilize an attention
layer after the BLSTM to extract words that are significant to the
semantics of an utterance, which is inspired from the encoder-
decoder framework [15, 16, 17].

In this paper, we propose several approaches to leverage hi-
erarchical knowledge in both target and source languages with
similar alphabets, which are not restricted to parallel corpora.
Inspired by recent research on transfer learning [18], we seek
to learn shared character representations between related lan-
guages where morphological and phonological knowledge may
exist in common. Approaches for language-adaptive training
traditionally fine-tuned on combined datasets[3, 4]. We seek to
model language-general and language-specific representations
explicitly, inspired from [19], language-general knowledge on
the sequence level are encouraged to be compatible with differ-
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ent languages via a shared BLSTM, then jointly characterize a
sequence with language-specific knowledge acquired by a spe-
cific BLSTM. Gate connection is further proposed to adaptively
characterize invariant and variant information of a language.

The remainder of the paper is organized as follows. Sec-
tion 2 sets the baseline CharNN-BLSTM-CREF architecture for
slot filling task. In section 3, we extend this architecture to
jointly model intent determination and slot filling. Approaches
for cross-lingual SLU will also be presented in detail. The next
section details our datasets, implementation and experiments.
Finally, conclusions are drawn in section 5.

2. CharNN-BLSTM-CREF architecture

2.1. Character-level representation

SLU systems traditionally require word representations, regard-
less of the OOV problem and noises introduced by automatic
speech recognition (ASR) [20, 21]. Previous studies [12, 13, 14]
have explored character representations to alleviate such prob-
lems as morphological knowledge can be obtained from charac-
ters, like the prefix or suffix of a word. Another potential benefit
is the robustness to ASR errors, though a sequence of characters
may not be the object word, they may convey phonological in-
formation as most ASR systems model phonemes even charac-
ters directly in acoustic models [20, 22], where correspondences
exist between phonemes and graphemes to a large extent.

While character representations can be modeled by RNNs
e.g. BLSTM [12], recent approaches [13, 14] have demon-
strated the effectiveness of CNNs to extract morphological in-
formation from characters of a word and encode it into neural
representations. We adopt the neural architecture proposed in
[11], where initial character embeddings with dropout are fed
into the convolution layer and then a max-pooling layer.

2.2. BLSTM

BLSTM is utilized to model the entire sequence by captur-
ing both past and future information, which has proven to
be effective in previous works [12, 15]. Given a sequence
z = (x1,x2,...,27), each input at time ¢ is represented as a
d-dimensional vector x;, an LSTM generates a hidden state h ;
of the forward context at time ¢ and another LSTM calculates
the backward hidden state h ;. Final representation of the hid-
den state at each time step is obtained by concatenating both

—
forward and backward ones hy = [h, h]. Stacked BLSTM
can also be applied, while only one layer is used in this work.

2.3. CRFs

For sequence tagging tasks, it is beneficial to explicitly model
the dependencies between labels in neighborhood and jointly
decode the optimal labels. Therefore, instead of modeling tag-
ging decisions independently as in locally normalized models,
e.g. RNN, we model them jointly using CRFs [23, 24]. Specif-
ically, linear-chain CRF [24] is adopted for efficiency and con-
venience in this work. Given an input with a sequence of
vectors * = (w1, %2,...,or) and corresponding labels y =
(y1, Y2, ..., yr), the global feature vector has the form :

F(y7$) = Z)‘iti(yt*17yt7m7t) + Zﬂjsj(yt7$,t) (1)

t)i t,j

where t;(y+—1, yt, x,t) is a transition feature function of the
entire observation sequence and labels at time step ¢ — 1 and
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Figure 1: Architecture of CharCNN-BLSTM-CRF.

t in the label sequence; s;(y¢, x,t) is a state feature function
of the label at time ¢ and the observation sequence, i.e. scores
output by the BLSTM in our case; A and yp are parameters to
be estimated, where p is parameters of the BLSTM layer. The
conditional probability distribution defined by the CRF is then:

exp F(y, x)
>, exp F(y, )

We train the CRF by maximizing the log-likelihood of a given
training set T = {(Zom, Ym ) }orey

p(ylz) = )

L= Zm log p(Ym |m) 3

The most probable label sequence for an input sequence is:

9 = arg max p(y|z) = argmax F(y, z) )
y y

Training and decoding can be solved efficiently by adopting dy-
namic programming algorithms.

2.4. CharNN-BLSTM-CRF

Given an utterance sequence, character-level representations are
obtained by the neural network (NN), e.g. CNN, then concate-
nated with pre-trained word embeddings for each word in the
utterance. The joint-representations are fed into the BLSTM to
model the total sequence, while dropout operated on both input
and output of the BLSTM is a regularization approach. Finally,
the CRF layer decodes the optimal taggers. Figure 1 illustrates
the architecture introduced for slot filling in detail.

3. Multi-task and cross-lingual training
3.1. Multi-task training with attention

For joint modeling of intent determination and slot filling, ad-
ditional intent classification layer shares the same word-level
encoder with the slot filling layer, where outputs of the BLSTM
represent the entire input utterance. While not all words con-
tribute equally to the semantic meaning of an utterance, we
further introduce the attention mechanism [25] to extract such
words that significantly characterize an utterance. Specifically,
we first feed the outputs of the BLSTM £ through a single-layer
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Figure 2: Joint-training neural architecture.

feed-forward network to get a hidden representation e of the en-
tire state outputs, then obtain a normalized importance weight
o for each state through a softmax function over e.

er = tanh(W,hy + by) 5)
_exp(er)

M exp(er) ©

c=) 0]

The context vector c of the utterance indicates part of the source
sequence that should be paid attention to. We formulate it as
a multi-task joint learning problem seeking to optimize a joint
loss function that combines losses from different tasks. Figure 2
illustrates the proposed method for joint modeling.

3.2. Cross-lingual training

Under the assumption that reliable and clean corpora are avail-
able, this section focuses on exploring multi-level transfer learn-
ing from different languages under the previously proposed
framework, which characterizes utterances hierarchically.

The first proposed approach is based on languages with
similar alphabets but not restricted to be in the same language
family. We share character-level representations for potential
benefits that languages with similar alphabets may have some
relationship in morphology and phonetics, while word-level
representations are specific for each language.

Higher-level semantic representations can also be shared
and transferred. A shared BLSTM encodes input-embeddings
in different languages, conveys language-general information
on the sequence level. Each language still maintains its own
BLSTM that carries language-specific knowledge, namely spe-
cific BLSTM correspondingly. The two BLSTMs for each lan-
guage are further gated and connected in the following form:

hfombined _ f(hfpeCifiC, h.tshared) (8)
g = O_(Wh’;:ombined + b) (9)
hiyated =g - hfombzned 4 (1 _ gt) ) hfpeclflc (10)

where f is the combined function e.g. summation over vec-
tors in this paper, g+ is the transform gate and (1 — g¢) is
the carry gate, which is inspired from highway network [26].
The gated connection adaptively carries information between
the language-specific representations and language-combined
representations which simultaneously characterize variant and
invariant information of a language. This architecture is rather
applicable for non-parallel corpora for its separability and adap-
tivity. The entire neural architecture for cross-lingual multi-task
training is illustrated in Figure 3. Learning is performed sepa-
rately via optimizing objectives for different languages.
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Figure 3: Cross-lingual multi-task architecture.

4. Experiment
4.1. Data

We evaluate the proposed approaches on the Airline Travel In-
formation Systems (ATIS) dataset, a corpus in English consist-
ing of semantically annotated spoken queries in standard BIO
format. We utilize the same corpus as [12, 15, 16], where 4978
utterances are used for training and 893 utterances for testing.
MIT Restaurant Corpus [27] is used as a non-parallel corpus,
consisting of 7660 and 1521 utterances for training and testing
respectively. However, as the latter corpus is not provided with
intent annotations, we apply it to slot filling only.

In order to facilitate the research of cross-lingual SLU, we
first translate the ATIS corpus from English to Spanish and Ger-
man with Microsoft Translator [28], then automatically map the
slot taggers from English to target languages with alignment
tools. We further manually fix obvious translation errors and
make the translated utterances as literal as possible. Missing
and incorrect annotations are manually annotated as well.

4.2. Implementation details

In this work, we only use lexical features, regardless of hand-
crafted features such as name entity types in previous models
[8, 9], since they are not generally available and usually highly
correlated with slot tags. GloVe embeddings trained on 6 bil-
lion words [29] are used as source language (i.e. English) word
embeddings, while for target languages (i.e. Spanish and Ger-
man) we take FastText [30] embeddings instead. English word
embeddings are 100 dimensions while Spanish and German em-
beddings are 300 dimensions unless otherwise specified, all of
which will be fine-tuned during training. Character embeddings
in all experiments are 100 dimensions by default.

Optimization is performed with Stochastic Gradient De-
scent with momentum 0.9 and mini-batch size of 20. Learn-
ing decay is adopted as n; = n0/(1 + pt) (where initial rate
no = 0.015, decay rate p = 0.05, ¢ is the current epoch) to pre-
vent over-fitting, and early stopping is applied to 30 epochs. We
set dropout rates to 0.5 in all experiments. Hyper-parameters for
the neural architecture is similar to [12], with all states of LSTM
cells set to 200, and for the CNN we use 30 filters with window
length 3. Finally, we found that 100-dimension context vector
for attention can achieve a better performance.



4.3. Basic architecture and joint training experiments

We first validate the effectiveness of our approaches for slot
filling by the F'1 score in turn. As shown in Table 1, ad-
ditional CRF layer significantly improves the performance by
1.53%. Character-level BLSTM with 200-dimension state size
is adopted to compare with the CNN. Though both CNN and
BLSTM achieve better performance than word-embedding-only
models, we find CNN can better characterize character-level in-
formation, achieves the best F'1 score of 95.81%.

Table 1: Comparison of slot filling model selection.

Model F'1 score(%)
BLSTM 94.17
BLSTM+CRF 95.70
BLSTM+CRF+CharBLSTM  95.75
BLSTM+CRF+CharCNN 95.81

By minimizing the joint loss of intent classification and slot
filling over CharCNN-BLSTM-CREF, the F'1 score increases
from 95.81% to 95.95%. Table 2 lists the error rate for intent
determination and F'1 for slot filling on several state-of-the-art
models trained on the same dataset, utilizing lexical features
only. With F'1 reaches 95.95% and error rate drops down to
1.23%, we obtain state-of-the-art performance in both tasks.

Table 2: Comparison among state-of-the-art joint models.

Model Slot(%) Intent(%)
CNN-CRF [31] 95.42 591
BGRU-CREF [9] 95.49 1.90
Attention Encoder-Decoder [15]  95.87 1.57
Our Joint Model 95.95 1.23

4.4. Cross-lingual experiments

The upper half of Table 3 lists the results of different strate-
gies for cross-lingual neural architecture on English, Spanish
and German ATIS datasets. In this part, we set mono-lingual
CharCNN-BLSTM-CRF with joint training as the baseline for
each language, where word embeddings in all languages are set
to 300 dimensions to facilitate the architecture of the shared
BLSTM. Model-I utilizes shared character representations in-
stead of language-specific character embeddings in the baseline,
while 100-dimension word-embeddings are adopted for source
language in Model-I* instead of that in Model-1. Model-II fur-
ther incorporates shared-representations on both character-level
and encoder-level as illustrated in Figure 3.

As shown in the upper half of Table 3, Model-I* that
shares character representations and utilizes appropriate word-
embeddings significantly outperforms the baseline in both tar-
get and source languages, with absolute improvement from
0.20% to 0.24% on slot filling, and decline of 0.11% to 0.68%
on intent error rate in target languages. Specifically, jointly
training with the Spanish corpus obtains the best F'1 score
of 96.17% in the English corpus. Whereas effective, this ap-
proach is sensitive to the dimension of word representations,
as Model-I* generally outperforms Model-I in both target and
source languages where only source word-embedding dimen-
sions differ. Models with shared-BLSTM achieve slightly better
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performance on average. When compared to Model-1, Model-
IT obtains comparable performance on intent and improves slot
filling in the source language, but mixed performance on slot
filling in target languages. Probable reason would come from
the difference of word embeddings between languages.

Table 3: Cross-Lingual performance on ATIS &MIT-Restaurant.

Target Target Source
Language Model slot intent slot intent
Baseline 93.00 1.68 9593 1.01
Spanish Model-I*  93.20 1.57 96.17 1.23
P Model-1 ~ 93.10 146 9577 1.23
Model-II  92.76 1.46 95.89 1.23
Baseline  93.61 4.93 9593 1.23
German Model-T*  93.86 4.25 96.02 1.23
erma Model-1 9342 482 9591 112
Model-II  93.52 4.70 9593 1.12
Baseline 92.84 - 80.25 -
Spanish Model-I 93.14 - 80.55 -
Model-II  93.16 - 80.08 -
Baseline 93.38 - 80.25 -
German Model-1 93.50 - 80.21 -
Model-II  93.54 - 80.64 -

Additional experiments on non-parallel corpus for slot fill-
ing are also illustrated in the lower half of Table 3, where ATIS
for target languages and MIT Restaurant Corpus for the source
language. Though mixed performance in the source language,
Model-I and Model-II in target languages both achieve bet-
ter performance over the baseline, the single-task SLU model,
demonstrating the effectiveness and portability of our architec-
ture to non-parallel corpora even in a different domain.

5. Conclusions

In this paper, we have demonstrated the effectiveness and scal-
ability of the joint neural architecture for slot filling and intent
determination which alleviates the OOV problem and explic-
itly models dependencies between neighbor labels. Assuming
reliable datasets are already provided with human-supervision,
which avoids MT errors and is portable to non-parallel corpora,
multi-level knowledge transfer has been proposed for cross-
lingual SLU. Sharing character-level representations benefited
both source and target languages, while the adaptive combina-
tion of language-general and language-specific representations
on the sequence-level relatively improved the performance for
both languages. Portability to non-parallel corpora was further
proven to be effective with the proposed architecture. Future
research would focus on incorporating MT systems into this
framework by taking advantage of adversarial learning, and ex-
tending to larger and more complicated data sets.
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