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Abstract

Exploiting multiple microphones has been a widely-used
strategy for robust automatic speech recognition (ASR). Partic-
ularly, in a general hands-free scenario, acquisition of speech
usually happens using a set of distributed microphones or ar-
rays simultaneously. Each microphone or array (defined as a
stream) carries a different quality of information. The technique
of stream fusion is beneficial to provide the best distant recog-
nition performance against the effects of potential disturbances
such as noise, reverberation, as well as the speaker movement.

In this work, we propose a stream attention framework to
improve the far-field ASR performance in the distributed multi-
microphone configuration. Frame-level attention vectors have
been derived by predicting the ASR performance of the acous-
tic modeling of individual streams using the posterior proba-
bilities from the classifier. They are used to characterize the
amount of useful information each stream contributes, for the
purpose of an efficient and better-performing decoding scheme.
In this paper, we investigate the ASR performance measures
using our proposed stream attention system on real recorded
datasets, Mixer-6 and DIRHA-WSJ. The experimental results
show that the proposed framework yields substantial improve-
ments in word error rate (WER) compared to conventional
strategies.

Index Terms: Distributed multi-microphone ASR, stream at-
tention, performance monitor, Posterior probability distribution.

1. Introduction

Hands-free far-field speech recognition in real environments has
received a great deal of interest in the speech recognition com-
munity. Making the recognizer robust to noise and reverbera-
tion has been a great challenge. In far-field ASR scenarios, it is
feasible to use many parallel recognition streams. Recognition
of speech from multiple acoustic streams obtained from micro-
phones distributed in space is a situation that needs to be solved.
Depending on the room situation and microphone status, some
streams (microphones closer to the speaker, less noise and re-
verberation, more matched with the training data) may deliver
better recognition results than the others. In such a situation, au-
tomatically selecting the best microphone for ASR, and further
achieving a potential better ASR performance through combin-
ing the microphones is desirable. Conventional solutions such
as selecting the acoustic stream with the highest energy are vul-
nerable to strong noises [1].

There are several ways to enhance the ASR performance
utilizing the multi-microphone configuration. One possible
strategy is to align the time delay between the microphones and
use spatial information to carry out beamforming at the signal
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level [2][3]. However, in the distributed setup, time delays are
difficult to estimate [4]. As a front-end processing module, the
objective functions used in beamforming are also not optimal
for ASR [5]. Another way of approaching this problem is to
find the highest likelihood combination of best paths through
multiple recognition lattices, formed from all individual streams
[6][7]. This requires carrying out full searches in each micro-
phone stream, which is typically done over the whole length of
each utterance. The difficulty with this approach is the comput-
ing complexity of the multiple decoding operations.

Most ASR systems require feature vectors, which repre-
sent information about underlying speech sound at regular time
intervals. Such feature vectors can be derived from posterior
probabilities of the sounds, estimated by deep neural network
(DNN) classifiers. DNN posteriors are able to tolerate the mis-
alignment between the classifier inputs and corresponding la-
bels [8]. We propose to construct at every time instant the best
feature vector from a combination of the most reliable sound
posteriors from different available streams, which is defined as
a stream attention scheme. Hence, in our setup, only one de-
coding operation for ASR is needed, which is computationally
more beneficial than multiple decoding operations. Specifically,
an attention scheme can be achieved by generating an attention
vector for multiple inputs [9][10], where the attention vector
plays the important role of addressing the crucial parts of the
inputs. Given the feature vectors (DNN posteriors), the key
problem of stream attention is to find an appropriate measure of
the goodness for the feature vectors in the individual streams.
This goodness measure could then be used in deriving a proper
attention vector for the construction of the best feature vector
[T1][12][13][14][15][16].

Inspired by these mechanisms, we propose a stream atten-
tion framework to improve the distributed multi-microphone
ASR performance. The unsupervised ASR performance moni-
tor (PM) is used to build the relationship between the goodness
of DNN posterior vectors and the ASR performances to calcu-
late the discriminative attention vectors. Consequently, for each
time instant, we construct the signal acquisition with the best
fusion of the most reliable microphones or arrays using the at-
tention vector, which is applied to the DNN posteriors derived
from all the streams. Further, we extend the auto-encoder based
PM [16] by including the temporal information which is a dis-
tinctive property of speech. Based on detailed ASR experiments
using the real datasets, we achieved a robust performance in
several representative well-designed scenarios.

The remainder of this paper is organized as follows: Section
2 describes the proposed stream attention framework of the dis-
tributed multi-microphone system. In section 3, different ASR
performance measures are compared via ASR experiments us-
ing real recordings. Section 4 concludes the paper.
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Figure 1: Stream attention framework using the posterior
probabilities from DNN classifier in the distributed multi-
microphone setup. The inputs can be signals from individual
microphones or the synthesized signals from beamformings.

2. Proposed Framework

In this section, we describe the stream attention framework ap-
plied to the posterior probabilities over Hidden Markov Model
(HMM) states to force the recognizer to automatically focus on
the more reliable microphones. The diagram in Fig.1 demon-
strates the attention scheme and attention vector estimation (red
rectangular in Fig.1) using multiple posteriors - each obtained
from the corresponding Softmax output of a typical DNN-
HMM classifier.

2.1. Formulation of the Stream Attention Scheme

As suggested by Fig.1, let P, [P}, P?,...,PM]T de-
note the posterior probability sequences of HMM states O
at time ¢, where © is the transpose operation and P} =
p(O|X%4),i = 1,..,M is the ith posterior probability se-
quence given the feature sequence X extracted from the sig-
nal of microphone i. M is the total stream number, which is
equal to the number of microphones (or arrays). Specifically,
Xi = [X{_., ..., X{, ..., X{ )7 is context based, including
27 + 1 adjacent frames centered at time ¢.

Assuming that we have the stream attention vector w; =
[wi, w?, ..., w]T, which is an M-element vector with summa-
tion equal to 1 at time ¢, we are able to achieve the re-weighted
posterior probability sequence P, as follows,

Pt =wPy (D

After the re-weighted combination, Py is used for decoding.

2.2. ASR Performance Monitor informed Attention Vector

For each time instant, the attention vector is estimated by eval-
uating the relative ASR performance between the microphone
streams in an unsupervised way.

2.2.1. Entropy of the phoneme posterior distribution

Researchers proposed to distinguish the ASR performance in
each stream by observing the relationship between recognition
accuracy and the phoneme posterior distribution. The posterior
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distribution at a particular time point would converge to non-
informative, as the signals were increasingly corrupted by noise

or reverberation. Therefore, inverse entropy 1/H; of P isa
measure to determine the performance of microphone stream ¢
[11][12], so that the attention vector of each frame is given by

i 1/H;
=/ 2

2.2.2. Long-term M-measure using the posteriorgram

By considering the temporal properties of phoneme poste-
rior probability, a mean time distance (M-measure) accumu-
lates how similar or different every two probability vectors
P{_x, and P} are, by calculating their symmetric Kullback-
Leibler divergence D(P{_A,, P{) spaced over several time-
spans [13][15]. If the speech were corrupted by stationary or
slowly varying distortions, these distortions start dominating the
signal and the phoneme posteriors become more similar, result-
ing in a lower average value of M-measure. M-measure relies
on long-term windows over hundreds of milliseconds. Stream
with better ASR performance would have a larger value than the
other streams in this long-term window. Thus, a time-invariant
attention vector having binary elements across the window is
derived, which is given by w} == 1, if M*(At) > M7 (At),
where i # j, t belongs to all the frame times in the window.

2.2.3. Extended auto-encoder with temporal context training

The multi-layer neural network is good at modeling the com-
plex data distributions. An auto-encoder can be used as an ASR
PM to model the output activations of DNN acoustic model
[16].

Inspired by M-measure using the temporal dynamics to pre-
dict the ASR performance, in this study, we extend the auto-
encoder PM [16] through training with the context-based pos-
terior features centered by the current frame as the input, and
current frame at time ¢ as the training target. To further relax
the strict alignment of input features and corresponding targets
and significantly reducing the input size, we exploit the time-
delayed neural network (TDNN) structure with splices in the
hidden layers to train the auto-encoder [17].

Specifically, in the training phase, the auto-encoder is
trained on the HMM state posterior sequences with Logit (to
make the features more Gaussian) and a principal component
analysis (PCA) transformation (transformation basis of PCA
is evaluated from the training data). The data for training the
auto-encoder is the same as that for training the DNN classifier.
Mean square error (MSE) criterion is used as the cost function
for auto-encoder training. In the test phase, the reconstruction
error of test data is used as a measure of stream confidence,
which means that a vector similar to the distribution of training
data will yield a low reconstruction error compared to vectors
drawn from a different distribution. The lower the reconstruc-
tion error is, the better test and training data are matched, result-
ing in a better recognition accuracy. Therefore, an auto-encoder
based frame-wise attention vector element w; can be derived as
follows

Yl
- M
S 11l

where ||e;|| is the 2 norm of reconstruction error vectors.
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3. Experiments and Results
3.1. Dataset and Baseline

The framework coupling with PMs was evaluated on two
recorded datasets, which are a subset of Mixer-6 dataset [18]
and DIRHA-WSJ dataset [19].

3.1.1. Mixer-6 dataset (without speaker movement)

This dataset consists of a set of US English speakers reading a
list of sentences. The recordings were conducted on-site by Lin-
guistic Data Consortium in two distinct office rooms (denoted
by “LDC” and “HRM” room) equipped with multi-channel
recording platforms. Each room was set up with a matching
set of 13 distinct microphones, placed at equivalent locations
relative to the speaker. However, the speaker did not move
during recording. The transcribed dataset was separated into
training part and testing part for ASR experiments. For each
utterance, we had thirteen synchronous (but not time-aligned
due to the delay in propagation of the sound wave) recordings
simultaneously. We used the recordings from microphone 2
(head-mounted microphone, best acoustic channel) as the train-
ing data, and the remainders for testing. Training data was 246.5
hours from more than 1350 speakers. The test data consisted of
two parts, one having 1031 utterances from 4 distinctive speak-
ers in the “LDC” room and the other one having 898 utterances
from another 4 speakers in the “HRM” room, respectively.

We tested all the thirteen microphone streams on the typ-
ical DNN-HMM system trained on MFCC features, with 11
frames stacking (£5), shown in Table 1. Except for micro-
phone 2, whose acoustic scene was matched with the training,
we derived two test sets for the stream attention task (trained on
clean, tested on various conditions). For the “LDC” set, we had
twelve streams working in normal status. For the “HRM” set,
ten streams worked well for ASR; however, the other two failed
(Mic 3&11). This phenomenon happens quite often in real en-
vironments, as microphones might be out of charge suddenly
or affected by strong echo, noise or reverberation. The system
should be robust in case of such microphone failures.

Table 1: WERs(%) of each distributed microphone stream in
the Mixer-6 test sets. The DNN classifier was trained on the
recordings from Mic 2, which was not used for testing.

Mic. ID | LDCroom HRM room
Mic 1 23.5 26.7
Mic 3 26.4 97.6
Mic 4 10.6 8.2
Mic 5 12.7 12.6
Mic 6 9.9 8.4
Mic 7 15.0 15.1
Mic 8 13.7 12.3
Mic 9 22.6 18.1
Mic 10 11.0 13.2
Mic 11 10.3 75.6
Mic 12 14.3 12.5
Mic 13 19.5 21.6

3.1.2. DIRHA-WSJ dataset (with speaker movement)

The DIRHA-WS]J dataset was collected in a real apartment set-
ting with typical domestic background noise and reverberation.
In the configuration, a total of 32 microphones were placed in
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the living-room (26 microphones) and in the kitchen (6 micro-
phones). The microphone network consists of 2 circular arrays
of 6 microphones (located on the ceiling of the living-room and
the kitchen), a linear array of 11 sensors (located in the living-
room) and 9 microphones distributed on the living-room walls.
For the microphone arrays, beamforming outputs can be gener-
ated that form extra streams for further comparisons.

A contaminated version of the original WSJ (Wall Street
Journal) corpus is used for training, while the test is performed
with the DIRHA-WSIJ dataset. Both real and simulated data are
employed for the test. The real data consisted of 3 Male and
3 Female native US speakers uttering 409 WSJ sentences. We
picked out 7 microphones and 1 array distributed in the room
for our stream attention purpose. Table 2 shows the baseline
WERs for individual microphones, as well as the output from
Delay-and-Sum beamforming (LAG6 is the central element of
the Ceiling Circular Array). During the recording, the speaker
was asked to move to a different position and take a different
orientation after reading several sentences. To examine the ro-
bustness of the proposed system, three representative cases were
designed for testing, which were

Case 1: Using 6 individual microphones distributed in the
living room (LA6, L1C, L4L, LDO7, L3L, L2R) where the
WERSs of the microphone streams over the test set are compara-
ble as the speaker moved around during recording.

Case 2: Using 5 individual microphones and 1 beamform-
ing output (L1C, L4L, LDO7, L3L, L2R, Ceiling Array).

Case 3: Using 6 individual microphones distributed in the
living room (LA6, L1C, L4L, LD07, L3L, L2R) and one in the
kitchen (KAG6), a stream with worst WER.

Table 2: WERs(%) of the 7 distributed individual microphone
streams and 1 beamforming stream in the DIRHA-WSJ test sets,
consisting of both simulated and real recordings. Combinations
of the streams are used for testing the robustness of the frame-
work.

Mic. ID Sim Data | Real Data

LA6 237 30.6

L1C 22.5 30.8

L4L 235 313

LDO07 224 30.6

L3L 22.6 30.8

L2R 22.8 34.9

KA6 58.6 74.1

Ceiling Circular Array 21.3 26.5

3.2. Baselines and Comparative methods

WER results were compared between the proposed and conven-
tional strategies, like picking out the best stream by detecting
the energy [20] or signal-to-noise ratio [21] at the signal level,
combining the lattices by doing a union of the lattices from
different streams at the lattice level [7], as well as the famous
ROVER technique [6]. In addition, we selected a stream with
the lowest error rate for each utterance to get the Utterance Or-
acle, and for each test set to get the Best Stream, respectively.

M-measure PM was used to select the stream sentence-by-
sentence [13][15]. Meanwhile, for the frame-wise fusion, we
took inverse entropy [12] and auto-encoder (AE) [16] for per-
formance comparison. A simple Equal Weights was performed
as the frame-wise baseline [22]. For the auto-encoder hierarchy,
we investigated the effect of using different temporal context



Table 3: WERs(%) comparison of various microphone stream attention approaches on the Mixer-6 and DIRHA-WSJ distributed multi-
microphone datasets. Group A: Baselines from cheating experiments; Group B: Conventional strategies performed at the signal,
lattice and word level; Group C: Pick out the best stream sentence-by-sentence using M-measure PM in the proposed framework;

Group D: Frame-wise stream attention using different PMs.

Mixer-6 Dataset DIRHA-WSJ Dataset

Group Method Case 1 Case 2 Case 3
LDC  HRM | Ave Sim Real | Sim Real | Sim Real Ave
A Utterance Oracle 4.1 2.3 32 16.1 237 | 155 226 | 16.1 23.7 | 19.6
Best Stream 9.9 8.2 9.1 224 30.6 | 21.3 265 | 224 306 | 25.6
Energy 12.7 15.1 139 || 233 328 | 229 312 | 358 50.6 | 32.8
B Signal-to-Noise Ratio (SNR) 19.5 356 | 27.6 || 21.5 29.7 | 21.0 288 | 223 309 | 257
Lattice combination 10.7 21.7 162 || 199 28.1 | 19.7 27.1 | 21.7 313 | 246
ROVER (word level) 7.9 9.8 8.9 192 278 | 180 264 | 195 282 | 232
C M-measure 10.1 9.0 9.6 19.1 273 | 181 26.1 | 19.1 273 | 22.8
Equal Weights 9.7 30.0 199 || 194 283 | 189 274 | 214 305 | 243
Inverse entropy 7.7 7.7 7.7 19.0 27.6 | 187 273 | 20.7 29.6 | 23.8
AE w/o context 8.5 7.0 7.8 187 27.6 | 180 26.6 | 200 289 | 233
D AE w context [-8, 5] 8.3 6.9 7.6 187 275 | 179 264 | 199 286 | 232
AE w context [-16,12] 8.1 6.8 7.5 183 264 | 17.7 263 | 19.8 28.6 | 22.8
AE w context [-20,14] 8.4 6.8 7.6 189 275 | 181 262 | 19.8 287 | 232

sizes on WER. The auto-encoders for the Mixer-6 and DIRHA-
WSJ dataset were trained with 6 and 5 layers (a 24-unit bottle-
neck layer in the middle) respectively, and each layer consisted
of 512 ReLU units. The context was introduced via a TDNN
architecture with different temporal resolutions at each layer.

3.3. Results

Table 3 shows the WER results using various comparative tech-
niques. As shown in Group “A”, the Utterance Oracle gives
the potential best WERs, suggesting that the recognition perfor-
mance could be largely improved if we do the optimal micro-
phone selection.

In Group “B”, we observe that conventional signal level
measures, such as energy and SNR, are not reliable. Lattice
combination outperforms Best Stream in some cases of the
DIRHA-WSJ dataset. For the Mixer-6 dataset, Lattice com-
bination performs worse, especially on the “HRM” test set. It
takes the risk of involving the bad streams. However, ROVER
can provide a stable improvement on both datasets.

Our approach carried out on the DNN posteriors shows a
superior performance, which is delivered by Group “C” (sen-
tence based M-measure PM). However, in some applications,
the acoustic situation may change dynamically and solutions
that require such longer signal spans (over 800ms for the M-
measure) for making the stream selection may not be appro-
priate. For instance, in the Mixer-6 ASR experiments, some
sentences are quite short, which cannot provide enough frames
with long time span for calculating the M-measure.

In Group “D”, we provide the WER results of frame-wise
attention using different PMs. In the Mixer-6 dataset, when
applying equal weights to the 12 microphone streams, a bet-
ter WER (9.7%) is achieved on the “LDC” test set. However,
performance on “HRM” test set with two of the streams in bad
condition gets much worse (30.0%). The same trend can also
be observed in the DIRHA-WS]J dataset. The average WER
over the cases (24.3%) still shows a better performance than
Best Stream (25.6%). In contrast, the inverse entropy approach
achieves a substantial WER improvement compared to the Best
Stream one in both datasets. In the Mixer-6 dataset, the relative
improvement of the “HRM” set (6.1%) is not as much as that
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of the “LDC” set (22.2%). This might be due to that the pos-
teriors from pure noises can also derive a low entropy, which
misleads the attention scheme. This phenomenon does not oc-
cur when the auto-encoder based attention vector is applied. We
find that the improvements are consistent in both Mixer-6 test
sets. For the DIRHA-WSJ dataset, the auto-encoder approach
also gives more robust recognition results than inverse entropy.
However, in some cases, especially in the Real test sets, M-
measure outperforms the auto-encoder (without context train-
ing) approach, suggesting that looking at temporal dynamics of
posteriors would be helpful. As we enlarge the context window
for training, it is evident that the auto-encoder approach is able
to decrease the WER on both datasets. On average, the best per-
formance (7.5% and 22.8%) is achieved when the context win-
dow is [-16,12], implying that ~300 ms is enough to complete
the stream attention scheme, which is more robust and efficient
than M-measure, as well as the ROVER technique.

4. Conclusion

In this work, we aimed at improving the far-field ASR per-
formance using distributed microphones and arrays. A stream
attention framework was designed to generate more reliable
HMM state posterior probabilities, given a classifier (Improve-
ment of classifier, like classifier adaptation using test data, is not
the point in our approach). The attention scheme was achieved
by assigning to each stream a discriminative confidence, which
is derived via measuring the ASR performance in an unsuper-
vised way. The framework can be flexibly applied to the sce-
narios with both individual microphones and beamformers.

The far-field ASR experiments revealed that the frame-
work showed a substantial capability to improve the ASR per-
formance compared to the signal, lattice and word level ap-
proaches. Among the PM techniques, the extended frame-wise
auto-encoder trained with temporal context showed a more ro-
bust ability to resist perturbations such as microphone failure
and speaker movement. In general, the framework coupling
with PMs is able to take advantage of all available microphones
in the space in parallel, while decoding for the best path only
once, which is computationally affordable and has relatively
low latency in the real-time ASR.
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