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Abstract
Nasals and approximants consonants are often confused with
each other. Despite the distinction in the production mecha-
nism, these two sound classes exhibit a similar low frequency
behavior, and lack significant high frequency content. The
present study uses a spectral representation obtained using the
zero time windowing (ZTW) analysis of speech, for the task of
distinction between these two. The instantaneous spectral rep-
resentation has good resolution at resonances, which helps to
highlight the difference in the acoustic vocal tract system re-
sponse for these sounds. The ZTW spectra around the regions
of glottal closure instants are averaged to derive parameters for
their classification in continuous speech. A set of parameters
based on the dominant resonances, center of gravity, band en-
ergy ratio, and cumulative spectral sum in low frequencies, is
derived from the average spectrum. The paper proposes classi-
fication using a knowledge–based approach and training a sup-
port vector machine. These classifiers are tested on utterances
from different English speakers in the TIMIT dataset. The pro-
posed methods result in an average classification accuracy of
90% between the two classes in continuous speech.
Index Terms: Nasal consonants, approximant consonants, zero
time windowing, dominant resonance frequency, numerator
group delay, support vector machine

1. Introduction
Nasal (/m/ and /n/) and approximant (/l/, /r/, /j/ and /w/) con-
sonants in English language belong to the family of sonorant
consonants in phonetics. These consonants usually do not ex-
hibit any frication noise. There have been attempts to study the
acoustic characteristics of nasal segments and their identifica-
tion in continuous speech. Approximants have not been studied
much for their identification in continuous speech. In this paper,
we derive the spectral features that help in distinguishing these
two classes, from a production point of view.

Nasals are sonorant consonants, and are produced with a
constriction in the oral cavity. Different nasal sounds are pro-
duced by closing the oral cavity at different articulatory posi-
tions. The point of constriction determines the corresponding
spectral characteristics. The place of articulation for nasal con-
sonants /m/ and /n/ in English language are bilabial and alve-
olar. Production of the nasal sounds also involves opening of
the velopharyngeal port by lowering the velum. This results
in a coupling of the nasal tract with the oral tract, resulting in
a longer production cavity [1]. The coupled nasal tract intro-
duces poles and zeros in the low frequency spectra, attributed to
the presence of multiple sinus cavities and the closed oral tract
[2, 3]. The temporal envelope of the nasal segments is gener-
ally characterized by a relatively lower energy content, and a
smaller variance, in contrast to the adjacent vowel segment.

Identification of nasals in speech relies mostly on the be-
havior of the low frequency pole, zero, and the first formant
(F1) [1]. Popular spectral cues to identify nasal segments in
continuous speech are the presence of a low frequency pole (in
200–350 Hz) and a following zero (in 600–1100 Hz) in the
spectrum, along with changes in the formant parameters such
as location and bandwidth [4, 5, 6, 7, 8]. The location of the
zero varies with the place of oral closure. A method based on
the spectral parameters, such as, the energy in low frequency
band (0–1 kHz), and the formant locations with corresponding
bandwidths, resulted in a recognition of 80% for prevocalic and
intervocalic cases and up to 60% for postvocalic cases [4]. An-
other method uses a set of parameters derived from different
frequency bands in the spectrum, such as centroid in 0–500 Hz
region, and average energy in 0–1, 1–2 and 2–5 kHz bands, to
identify the onset of nasal segments [5]. These parameters re-
sulted in a correct detection of 90% for nasal sounds present in
different vocalic contexts. Another study uses locations of the
peak amplitudes in multiple frequency bands (0–788 Hz, 788
Hz–2 kHz, 2–3 kHz, 3–4 kHz and 4–5 kHz), along with loca-
tion of the lowest spectral peak, and average value of the dif-
ference among these parameters, to identify nasal segments in
continuous speech [7]. The method resulted in a correct detec-
tion of 88% of nasal segments. Several other methods have fo-
cused on the study of nasalization in vowels [9, 10, 11, 12, 13].
Due to co–articulation, the nasal signature is mostly embedded
as nasality in the adjacent sound. This phenomena leads to per-
ception of nasal sounds in continuous speech.

Approximants are also sonorant consonants which are pro-
duced with a narrow constriction in the vocal tract. The rate of
change of size of constriction is usually slower for these conso-
nants leading to a slower formant transition from the adjacent
vowels [14]. For example, the first and second formants for /w/
and /l/ merge together before/after transition from/to the vowel.
Similarly /y/ exhibits a slower rise in amplitude for all the for-
mants, whereas /r/ exhibits higher formants in low frequency
range. The low frequency characteristics of approximants lie
between those of vowel and nasal sounds, and hence the spectral
changes during transition to these sounds is also subtle. There
have not been many studies to characterize the acoustic prop-
erties of these sounds. A study using sonorant measures, con-
sonant measures, and syllabic measures, is made to identify the
acoustic behavior of different manners in approximants [14]. It
uses energies in different frequency bands, and formant values,
along with transitions within formants across the VC/CV con-
junction regions.

There have been a few studies to distinguish nasal conso-
nants among a set of sounds with similar acoustic behavior, such
as semivowels, weak voiced fricatives, and voice bars [6, 8].
Parameters such as difference in the average energy between
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Figure 1: Normalized HNGD spectrum (0–2 kHz) obtained with l = 5 ms for nasal (a) /m/, and approximants (b) /l/, (c) /w/ and (d) /r/.

consonants and the adjacent vowels, average duration of reso-
nance in 200–400 Hz, average strength of the resonance, and
energy ratio between 0–350 Hz and 350–1000 Hz bands, are
used to identify the nasal segments in speech resulting in a de-
tection of 80%. Another study uses energy onset/offset mea-
sure, energy ratio based parameters, presence of a low spec-
trum peak, and variance of the amplitude envelope, to identify
the nasal segments and distinguish them from approximant seg-
ments [8]. The spectral representation obtained using the nu-
merator of group delay (NGD) has good resolution around the
spectral peaks. The Hilbert envelope of NGD (HNGD) spec-
trum helps in resolving the low frequency nasal peaks, and
therefore was used to identify the presence of nasal segments
in voiced speech [19]. These studies have also highlighted the
similarity between nasal and approximant segments, affecting
the performance of nasal identification algorithms [8, 19]. The
task of distinguishing between nasal and approximant conso-
nants appears straight–forward owing to the presence of a spec-
tral zero in the former case. However, the modeling and iden-
tification of a spectral zero is a difficult problem in signal pro-
cessing.

The present study exploits differences in the production
system response to discriminate nasal and approximant seg-
ments in continuous speech in English language. Acoustic char-
acteristics of these sound classes are studied using segments
of small duration around the high SNR regions in speech. A
method is proposed to discriminate nasals and approximant seg-
ments in continuous speech. The proposed method is tested
using utterances in the TIMIT dataset for different male and
female speakers of English language [20]. The organization
of this paper is as follows. Section 2 reviews the basic zero
time windowing (ZTW) analysis of speech. Section 3 describes
the parameters derived from the HNGD spectrum. Section 4
presents an algorithm to distinguish nasals and approximants,
and discusses the results. Section 5 gives a summary of the pa-
per.

2. ZTW based analysis of speech

The ZTW method uses a heavily decaying window for analysis
[17]. The windowed segment is given as x[n] = s[n]w[n],
where s[n] is the speech signal, and w[n] = w2

1[n]w2[n] is the
window function. The heavily decaying window functionw1[n]
is given by,

w1[n] =

{
0, n = 0,

1/(4sin2(πn/2N)), n = 1, 2, . . . ,N− 1,

(1)

w2[n] is another window which helps to reduce the effect of
truncation, and is given by,

w2[n] = 4 cos2(πn/2N), n = 0, 1, . . . , N − 1. (2)

N is length of the window (in samples) corresponding to a du-
ration of l ms. Application of the window function w1[n] can
be interpreted as an integration operation performed twice in
the frequency domain [17]. The spectral characteristics of x[n]
are obtained by successive differentiation of the NGD function
given by,

g(ω) = XR(ω)X
′
R(ω) +XI(ω)X

′
I(ω), (3)

where X(ω) = XR(ω)+jXI(ω) is the discrete–time Fourier
transform (DTFT) of x[n], and X ′(ω) = X ′

R(ω)+jX
′
I(ω) is

the DTFT of nx[n]. The Hilbert envelope of the differenced
NGD (HNGD) function is computed to represent the spectral
characteristics of x[n]. The HNGD exhibits good resolution of
spectral peaks [17, 18]. The ZTW method uses a small window
of duration less than a pitch period. The HNGD spectra can be
interpreted as instantaneous spectral representation. The ability
of the instantaneous spectra to discriminate between the acous-
tic vocal tract system response between glottal open and closed
region was discussed in [21].

3. Analysis of nasals and approximants
Figure 1 shows the normalized HNGD spectra (|H(ω)|) for
nasal and approximant segments obtained using the ZTW
method (l = 5 ms). The spectra (Figs. 1(a–d)) are obtained
at glottal closure instant (GCI) locations in the nasal (/m/) and
approximant (/l/, /w/, /r/) segments. The nasal segment ex-
hibits significant low frequency spectral prominence as com-
pared to approximants, where the spread results in prominent
peaks appearing in the frequency range of 500–600 Hz, and
beyond. The low frequency nasal resonance (300–450 Hz) and
the higher frequency characteristic resonances for approximants
are resolved well in the HNGD spectra. The differences in the
spectral structure reflect the changes in the production charac-
teristics.

3.1. Features for discriminating between nasal and approx-
imant segments

The following features are derived from the HNGD spectrum to
discriminate among nasals and approximants.

• Dominant resonance frequencies (DRFs): The first two
dominant resonance frequencies (ρD1 and ρD2 ) and their
respective strengths (ρS1 and ρS2 ) are given by,

ρD1 = argmax
ωi

(H(ωi)), ρS1 = |H(ρD1)|, (4)
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(a) Nasal segments
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(b) Approximant segments

Figure 2: ρD1 vs. ρS1 (M black) and ρD2 vs. ρS2 (o red) for (a)
nasal and (b) approximant segments.

where ωi is the frequency location of ith peak in the
HGND spectrum H(ω). The peak locations are identi-
fied at the zero–crossings of the differenced HNGD spec-
trum. The ρD2 and ρS2 values correspond to the second
dominant peak.

• Cumulative sum (ρH(ω)): The cumulative sum of the
normalized HNGD spectrum is used to parameterize the
gradient of the low frequency spectral energy.

• Spectral center of gravity (ρC ): The center of gravity for
a low frequency (ω = 0–1200 Hz) range is computed to
capture the concentration of spectral energy. It is given
by

ρC =

∑
ω ωH(ω)∑
ωH(ω)

. (5)

• Ratio of spectral energies (ρE): The ratio of energies
in the frequency ranges 0–500 Hz and 500–1200 Hz is
used to highlight the presence of the spectral null in case
of nasals.

These parameters are obtained around GCI locations in
each segment, for utterances of different male and female
speakers of English in the TIMIT dataset [20]. The scatter plots
of (ρD1 ,ρS1 ) and (ρD2 ,ρS2 ) for nasal segments are shown in
Fig. 2(a), and for approximant segments in Fig. 2(b). The ρD1

values for nasals appear in a cluster in the frequency range of
200–350 Hz. For approximants, these appear in a cluster in the
higher frequency range of 450–600 Hz. The ρD2 values for
these classes also appear in different frequency ranges of 500–
1000 and 1000–1500 Hz, respectively.

Figure 3 illustrates the cumulative sum contour normalized
with respect to total energy content till 500 Hz. The high gra-
dient in the low frequency range result in a convex contour for
nasals, as can be seen in Figs. 3(a) and 3(b) for /m/ and /n/
segments, respectively. The contour appears relatively concave
in Figs. 3(c) and 3(d), for /r/ and /l/ segments, respectively.
This difference is highlighted by observing ρH(ω) at 300 Hz.
The nasal spectral energy rises beyond half of its net energy at
this frequency, whereas the approximant spectral energy stays
below 0.6, as can be seen in Fig. 3(e). The parameters ρC
and ρE also help in discriminating nasal and approximant seg-
ments. The ρC values usually lie in the 300–400 Hz range for

nasal segments, and in the 450–550 Hz range for approximant
segments.

4. Classification algorithms
The parameter set S = {ρD1 , ρD2 , ρS1 , ρS2 , ρH , ρC , ρE} is
derived at GCIs for segments of nasals (/m/ and /n/) and ap-
proximants (/l/, /r/, /j/ and /w/). The HNGD spectra are com-
puted for l = 5 ms, for 50 samples locations around each
GCI. An analysis window duration comparable to the average
human pitch period helps in obtaining the spectral characteris-
tic with an instantaneous nature. The GCIs are obtained using
the ZFF method [16]. Two methods, namely the knowledge–
based approach and classification with SVM, are used to study
the effectiveness of the proposed parameter set in discriminat-
ing the two classes. The knowledge–based approach gives bet-
ter insight into the changes in production mechanism of these
utterances. But the problem with this approach is setting suit-
able thresholds. The SVM classifier avoids this problem, but
requires good labeled data.

Table 1: Parameters and the corresponding threshold values.

ρD1 (Hz) ρD2 (Hz) 1− (ρS1/ρS2)
θ1 = 400 θ2 = 600 θ3 = 0.4

ρC (Hz) ρHω1
ρE

θ4 = 400 θ5 = 0.5 θ6 = 1

The knowledge–based method utilizes the average behavior
of the parameters to derive thresholds for the task. The param-
eters and their thresholds are given in Table 1. The thresholds
are obtained by observing these parameter values across 300
instances of these classes.

A segment is classified as nasal if it satisfies majority of
the following conditions.
ρD1 ≤ θ1; ρD2 ≤ θ2; 1− (ρS2/ρS1) > θ3;
ρC ≤ θ4 ; ρHω1

≥ θ5 ; ρE ≥ θ6

The parameters are tested for 500 different segments of
nasal and approximant classes. The results obtained using the
proposed algorithm are shown in Table 2. The unsupervised al-

Table 2: Discrimination results for nasals and approximants.

Detection (%) Nasals Approximants
Nasals 95 5

Approximants 20 80

gorithm provides a good classification between the two classes.
To obtain a more generalization to the classification algorithm,
we use a supervised classification method. A support vector ma-
chine (SVM) is trained for the purpose of classification between
the two classes using the parameter set S [22]. The design and
complexity of an SVM classifier is determined by a subset of
the data to be classified. Given a set of training vectors {xi}Ni=1

and the corresponding class labels {yi}Ni=1, the SVM results in
a classification hyperplane. Natural data usually leads in classi-
fication problems that can only be solved using a nonlinear deci-
sion surface. Kernel–based transformations allow a dot product
to be computed in a higher dimensional space without explicitly
mapping the data into these spaces [22]. The present classifica-
tion method uses a radial basis function kernel, which is a form
of a Gaussian kernel.
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Figure 3: Cumulative sum contours for the HNGD spectra in the frequency region 0–500 Hz for nasals (a) /m/ and (b) /n/ and
approximants (c) /r/ and (d) /l/. (e) Average cumulative sum contours for nasals (- -) and approximants (–).

The classification procedure trains a SVM across 1500 in-
stances of nasal and approximant segments from TIMIT. The
classifier is tested across the TIMIT dataset, which results in an
average classification rate of 92% across the test data after 100
runs. A comparison of the classification results obtained using
the proposed parameter set with other parameters is given in
Table 3 The SVM is trained on the MFCC parameters obtained
from the same instances of the two classes. Another parameter
set, spectral band peak amplitudes, is derived based on the peak
amplitudes in the frequency bands 0–788 Hz, 788 Hz–2 kHz,
2–3 kHz, 3–4 kHz and 4–5 kHz, which are used for nasal seg-
ment identification [7]. Table 3 gives the classification rate (α)
obtained using these parameters. The table shows that the pro-
posed parameters outperform other parameters. The misclassi-

Table 3: Comparison of the proposed parameter set S, with
other parameters to discriminate nasals vs. approximants.

Methods MFCC SBPE S
α (in %) 82.5 67.2 91.6

fication of 8% of approximants as nasals and vice versa using
the parameter set S can be attributed to the factors related to the
duration of the segments, as well as a high amount of phonation
noise for some speakers and segments. The proposed parame-
ter set explores the distinction in the acoustic system response
for the two classes and is effective in the task of discrimina-
tion. The results prove to be beneficial towards improving ASR
systems, audio search engines and related applications. A fur-
ther study is planned to explore the utility of these parameters
towards discrimination among different nasal sounds, and ap-
proximant sounds.

5. Summary and conclusion
The paper examined the discrimination of nasal and approxi-
mant segments in continuous speech, using parameters derived

from the instantaneous HNGD spectra. The HNGD spectrum
is derived using the ZTW method, which has the ability to re-
solve the spectral peaks from small analysis window. A smaller
window helps to resolve the spectral characteristics for the glot-
tal open and closed phases with minimum overlap. The spectra
obtained around the high SNR GCI region is utilized to param-
eterize the spectra. A set of seven parameters is used to de-
rive an unsupervised algorithm to distinguish between the two
classes. The parameters are further used to train a SVM classi-
fier. A RBF kernel results in a classification accuracy of 92%
for speakers in the TIMIT dataset. The proposed method helps
improving the recognition of nasals and approximants in con-
tinuous speech.
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