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Abstract
In this work, we propose two improvements to atten-

tion based sequence-to-sequence models for end-to-end speech
recognition systems. For the first improvement, we propose to
use an input-feeding architecture which feeds not only the pre-
vious context vector but also the previous decoder hidden state
information as inputs to the decoder. The second improvement
is based on a better hypothesis generation scheme for sequential
minimum Bayes risk (MBR) training of sequence-to-sequence
models where we introduce softmax smoothing into N-best gen-
eration during MBR training. We conduct the experiments
on both Switchboard-300hrs and Switchboard+Fisher-2000hrs
datasets and observe significant gains from both proposed im-
provements. Together with other training strategies such as
dropout and scheduled sampling, our best model achieved
WERs of 8.3%/15.5% on the Switchboard/CallHome subsets
of Eval2000 without any external language models which is
highly competitive among state-of-the-art English conversa-
tional speech recognition systems.
Index Terms: attention based sequence-to-sequence models,
end-to-end speech recognition, sequential minimum Bayes risk
training, MBR

1. Introduction
The performance of speech recognition has been improved dra-
matically since deep neural networks (DNNs) were applied to
its main components such as acoustic model [1–6], language
model [7, 8], pronunciation model [9], etc. Given prior suc-
cess of applying DNNs to each individual component, there has
been growing interest in building an end-to-end speech recog-
nition system, i.e., a consolidated neural framework which sub-
sumes all necessary speech recognition components. Compar-
ing to a conventional hybrid system, such an end-to-end system
typically has several advantages including a simpler building
process, allowing a joint optimization among components and
a compact model size. Current end-to-end speech recognition
systems can be categorized into connectionist temporal classi-
fication (CTC) based [10–16] and attention based [17–19]. At-
tention based sequence-to-sequence system was first introduced
into speech recognition in [20]. Later on, an attention based
system, namely listen, attend and spell (LAS), was examined
on a large-scale speech task [21] and more recently it shows
a superior performance to a conventional hybrid system [22].
Although an attention based sequence-to-sequence system has
matched or outperformed a conventional hybrid system when
trained on large-scale datasets [22, 23] and gained its popular-
ity lately, there are few, if any, previous works demonstrating
whether it can also achieve a comparable performance to a con-
ventional system on the standard Switchboard dataset, a widely
used English conversational speech benchmark.

This work focuses on two improvements to an attention
based sequence-to-sequence speech recognition system and
demonstrates how it can be trained to perform comparably well
to a hybrid system on the Switchboard dataset. For the first
improvement, we propose to use the input-feeding architec-
ture [24] which feeds not only the previous context vector but
also the previous decoder hidden state information as inputs
to facilitate the decoder making current label prediction. The
second improvement is based on a better hypothesis generation
scheme for sequential minimum Bayes risk (MBR) training of
sequence-to-sequence models [25] where we introduce softmax
smoothing into N-best generation during MBR training. To-
gether with other training strategies such as dropout and sched-
uled sampling, our best model achieved WERs of 8.3%/15.5%
on the Switchboard/CallHome subsets of Eval2000 without any
external language models.

The remainder of the paper is organized as follows. In Sec-
tion 2, we first elaborate how an attention based end-to-end
speech recognition system works and then describe proposed
improvements to the system in details. All the experiment de-
tails and results are presented in Section 3. We conclude our
work in Section 4.

2. Improvements to attention based
sequence-to-sequence models

2.1. Attention based sequence-to-sequence models for
speech recognition

The architecture of the baseline sequence-to-sequence model
adopted in this work is similar to LAS [21] which is depicted
in Fig. 1-a. The inputs to the framework are typically several
hundred frames of speech features such as log-mel filterbanks
or MFCCs extracted from the input speech signal. Given T in-
put speech frames x = x1, x2, ..., xT , the encoder transforms
them into henc, a sequence of hidden states with the length T
which can be treated as a high level representation of the inputs:

henc = henc
1 , henc

2 , ..., henc
t , ..., henc

T

= Encoder(x1, x2, ..., xt, ..., xT ). (1)

The attention module takes as inputs all encoder hidden states
henc and the current decoder hidden state hdec

i . Based on a
compatibility score between the current decoder hidden state
hdec
i and each encoded hidden state henc

t , the attention mod-
ule computes the attention weights, i.e., the alignment between
input and output:

at,i = align(hdec
i ,henc)

=
exp(score(hdec

i , henc
t ))∑T

t′=1 exp(score(h
dec
i , henc

t′ ))
. (2)

Interspeech 2018
2-6 September 2018, Hyderabad

761 10.21437/Interspeech.2018-1030

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1030.html


Encoder

x = x1, x2, ..., xT

henc

Attention Decoder

ci

yi

ci�1yi�1

h̃dec
i

Projection & Softmax

hdec
i

Encoder

x = x1, x2, ..., xT

henc

Attention Decoder

ci

yi

yi�1

h̃dec
i

Projection & Softmax

hdec
i

h̃dec
i�1

(a) (b)

Figure 1: Comparing baseline (a) to input-feeding (b) archi-
tecture: one of the inputs to the decoder, ci−1, is replaced by
previous attentional hidden state h̃dec

i−1 in the input-feeding ar-
chitecture

Depending on different compatibility score functions in use, the
attention modules can be categorized into dot-product, MLP
and general [24]. In this work, we adopt MLP based attention,
specifically,

score(hdec
i , henc

t ) = vᵀa tanh(Wa[h
dec
i ;henc

t ]), (3)

where [a; b] denotes the concatenation of two vectors. The out-
put of the attention module is a context vector ci calculated via
a weighted sum of the encoder hidden states which can be in-
terpreted as a summary of all encoder hidden state information
used in the current prediction:

ci =
T∑

t=1

at,ih
enc
t . (4)

The decoder takes the previous embedded label prediction yi−1

and context vector ci−1 as inputs and outputs the current hidden
state hdec

i :

hdec
i = Decoder(yi−1, ci−1). (5)

hdec
i is first used by the attention module to calculate the context

vector ci and then the attentional hidden state h̃dec
i is obtained

as:

h̃dec
i = tanh(Wh[ci;h

dec
i ]). (6)

Finally the projection and softmax layer produce the distribu-
tion of current label outputs:

p(yi|y1:i−1,x) = softmax(Woh̃
dec
i ). (7)

2.2. Input-feeding sequence-to-sequence models

In the baseline architecture, the inputs to the sequence-to-
sequence model are yi−1 and ci−1. The context vector ci−1

summarizes all encoder hidden state information from the last
step whereas the embedded prediction yi−1 only contains the
label information with highest probability from the last step in-
stead of the full decoder attentional hidden state information. To
overcome this, we propose to use the input-feeding architecture
as in [24] where instead of feeding the previous context vector
ci−1, we feed the previous attentional hidden state, h̃dec

i−1, to the
decoder as depicted in Fig. 1-b. Therefore, Eq. (5) becomes:

hdec
i = Decoder(yi−1, h̃

dec
i−1). (8)

2.3. MBR training and softmax smoothing for N-best gen-
eration

In this subsection, we first present thorough mathematical de-
tails of MBR training for attention based sequence-to-sequence
models and then describe the proposed softmax smoothing for
N-best generation. Let y denote the output sequence from the
sequence-to-sequence model: y = y1, y2, yi, ...yL. Given U
pairs of the training speech utterance x and its corresponding
reference label sequence yr , the MBR loss function can be writ-
ten as:

LMBR(x1:U ,y
r
1:U ) =

U∑

u=1

∑

yu

P (yu|xu)R(yu,yru)∑
y′
u
P (y′u|xu)

, (9)

where yu represents one of hypothesized output label se-
quences corresponds to xu. R(yu,yru) is the risk function be-
tween a hypothesized and reference label sequence, e.g., edit-
distance. P (yu|xu) is the sequence probability given input xu.
According to the chain rule,

P (yu|xu) = P (y1, y2, yi, ..., yL|xu)
= p(y1|xu)p(y2|y1,xu) · · · p(yL|y1:L−1,xu)

=
L∏

i=1

p(yi|y1:i−1,xu). (10)

Note that p(yi|y1:i−1,xu) is exactly the output of sequence-
to-sequence model as in Eq. (7). Therefore, to perform MBR
training of sequence-to-sequence model, we will need to de-
rive the gradients of MBR loss function w.r.t. p(yi|y1:i−1,xu).
For convenience, we use p(yi = y) as the shorthand for
p(yi = y|y1:i−1,xu), i.e., the probability of the model emitting
a particular label y at the ith step, f(yu) and g(yu) as the short-
hands for P (yu|xu) and R(yu,yru) in Eq. (9). Accordingly,
we define a hypothesis set S = {yu|yi = y} which contains all
the hypothesized sequences whose ith label is y. All hypothe-
sized sequences can be divided into two disjoint sets, yu ∈ S
and yu /∈ S. The MBR loss function can be rewritten as:

LMBR =
U∑

u=1

∑
yu∈S f(yu)g(yu) +

∑
yu /∈S f(yu)g(yu)∑

y′
u∈S

f(y′u) +
∑

y′
u /∈S

f(y′u)
.

(11)

Noticing
∂
∑

yu /∈S f(yu)

∂p(yi=y)
= 0, we take the derivative of MBR

loss function w.r.t. log p(yi = y),

∂LMBR

∂ log p(yi = y)
=

U∑

u=1

∂LMBR

∂p(yi = y)
· ∂p(yi = y)

∂ log p(yi = y)

=
U∑

u=1

∂LMBR

∂p(yi = y)
· p(yi = y)

=
U∑

u=1

(∑
yu∈S f(yu)g(yu)∑

y′
u
f(y′u)

−
∑

yu
f(yu)g(yu)

∑
yu∈S f(yu)

[
∑

y′
u
f(y′u)]2

)

=
U∑

u=1

∑

yu∈S
γ(yu)(g(yu)−Ru), (12)
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where γ(yu) is the normalized sequence probability, i.e.,
γ(yu) = f(yu)∑

y′
u
f(y′

u)
= P (yu|xu)∑

y′
u
P (y′

u|xu)
. And Ru is the aver-

aged risk among all the hypothesized sequences for the training
utterance u,

Ru =

∑
yu
f(yu)g(yu)∑
y′
u
f(y′u)

=
∑

yu

γ(yu)R(yu,y
r
u). (13)

Unlike hybrid systems, attention based sequence-to-
sequence model makes the label prediction not only conditioned
on the acoustic inputs but also previously emitted labels. Us-
ing lattices as the hypothesis set will practically complicate the
forward computation procedure in MBR training. Therefore N-
best obtained via beam-search has been found both efficient and
effective for MBR training in [25]. In this work, we use a sim-
ple left-to-right beam-search algorithm [20] to generate the hy-
pothesis set. The N-best set for MBR training is obtained by
re-scoring the hypothesis set according to [26]:

score(y,x) = logP (y|x)/
( (5 + |y|)α

(5 + 1)α

)
. (14)

Note that we’ve also tried the attention coverage penalty [26]
for re-scoring but it never worked in our experiment which is in
line with what was observed in [27]. A sequence-to-sequence
model tends to make over-confident predictions and some ap-
proaches such as label smoothing have been proposed to combat
this issue [22]. For beam-search, over-confident predictions will
lead to too many alike hypothesized sequences among N-best
which might prevent the MBR training procedure from seeing a
more diverse hypothesis space. To this end, analogous to using
a weaker language model for lattice generation in hybrid sys-
tems, we introduce softmax smoothing [28] during N-best gen-
eration. Specifically, when searching for N-best during MBR
training, we modify Eq. (7) as,

p(yi|y1:i−1,x) = softmax(β Woh̃
dec
i ), β < 1, (15)

to smooth the label prediction distribution and generate the
scores at each step of beam-search.

3. Experiments
We conduct our experiments on both Switchboard-300hrs and
Switchboard+Fisher-2000hrs datasets. For input features, we
use 40 dimensional log-mel filterbanks and splice central frame
with left 5 plus right 3 frames. The targets of our end-to-end
system are a set of 49 characters which contains English letters,
numbers, punctuations, special transcribed notations in Switch-
board including ’[laughter]’, ’[noise]’, ’[vocalized-noise]’ plus
’〈space〉’, ’〈SOS〉’, ’〈EOS〉’ which are used as the indicators
for the word boundary, start and end of the sequence. Stacked
bidirectional and two-layer unidirectional LSTMs are used for
the encoder and decoder, both with 512 hidden units. MLP
based attention module is adopted in our experiment as de-
scribed in Eq. (2) - (4). Adam algorithm [29] is used as
the optimization method for all our experiment where we set
β1 = 0.9, β2 = 0.999, ε = 10−8 as suggested in [29]. For
cross-entropy training, we use 0.001 as initial learning rate and
halve it once the improvement on the validation set is saturating
while for MBR training, we keep using 3× 10−6.

3.1. Frame subsampling and data augmentation

During preliminary experiments, we found two practical issues
when training attention based sequence-to-sequence models on

Table 1: WERs of baseline and input-feeding architectures
with different maximum length limits trained on Switchboard-
300hrs. See Fig. 1 for details on the two architectures in use.

Architectures MaxLen (# frames) WERs(%)
SWB Total

baseline 900 15.0 20.5
input-feeding 900 15.3 20.8

baseline 600 15.1 20.7
input-feeding 600 14.4 20.2

Switchboard. One issue is that the speech utterances in the
dataset are typically much longer than in other tasks like voice
search which causes the model training to easily run out of
GPU memory. To reduce the length of the input sequences,
we subsample the input by a factor of three similar to [22].
In the meantime, to guarantee the training procedure still sees
the same number of input frames, we augment the training data
three times using different speaking rates and volumes as in [6].
The other issue is even with data augmentation, sequence-to-
sequence model tends to overfit severely. To alleviate the issue,
we use dropout [30] and set the value to 0.2 throughout all our
experiments.

3.2. Scheduled sampling

We use teacher forcing, i.e., feeding the ground-truth label as
the previous label prediction, at early stages of our model train-
ing. However it introduces the mismatch between training and
inference. To this end, similar to [22], scheduled sampling [31]
is adopted. Instead of the ground-truth label, the label predicted
by the decoder from the last step is used with certain probabil-
ity. We launch the scheduled sampling training once the cross-
entropy loss improvement on the validation set is saturating.

3.3. Cross-entropy regularization for MBR training

It has been found in [25] that cross-entropy regularization is
crucial for MBR training of the sequence-to-sequence models.
In this work, the weighted cross-entropy loss of each hypothesis
in the N-best list is used to regularize the MBR loss where the
weight is the normalized probability γ(yu). The regularized
MBR loss function is:

L′MBR = LMBR + λ
U∑

u=1

∑

yu

γ(yu)Lxent(yu,y
r
u), (16)

where λ is the regularization factor which we set to 0.01
throughout all our MBR experiments. Note that as label outputs
are not frame-synchronized, the lengths of certain N-best yu
and the true label yru can be different. We simply use padding
or truncating to make sure the lengths match before computing
the cross-entropy loss.

3.4. Experimental results on Switchboard-300hrs

We use pytorch [32] and Kaldi [33] to implement all the mod-
els and experiments in this work. First we conduct the exper-
iments to compare baseline and input-feeding architectures as
described in Section 2. For both architectures, we use 6-layer
bidirectional LSTMs for the encoder and 2-layer unidirectional
LSTMs for the decoder. We first sort the training utterances
according to their length, group every 16 sequences, i.e., batch-
size=16, and then shuffle the groups before training. As we
discard the utterances that beyond the maximum length limits,
we tried two maximum length limits for both architectures, 600
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Table 2: WERs of input-feeding models with different number of
encoder layers trained on Switchboard-300hrs.

#Enc. Layers #Parameters WERs(%)
SWB Total

4 11.48M 16.2 22.0
5 13.08M 15.6 21.2
6 14.66M 14.4 20.2

Table 3: WERs of input-feeding models trained with Teacher-
forcing vs. Scheduled Sampling on Switchboard-300hrs

Models Sampling Probability WERs(%)
SWB Total

Teacher forcing 0 14.4 20.2
+Sampling 0.3 13.5 19.2
+Sampling 0.4 13.3 19.0
+Sampling 0.5 13.5 19.1

and 900 frames which translate to 18s and 27s in speech dura-
tion. As shown in Table 1, it seems the input-feeding models
benefit more from limiting the training utterances to a reason-
able length and the best model achieves 14.4% on the Eval2000-
Switchboard, an absolute WER improvement of 0.6% over the
best baseline architecture. We then study the effects of num-
ber of encoder layers by fixing the maximum length to 600. As
shown in Table 2, by increasing the encoder depth, an abso-
lute WER reduction of 1.8% is achieved by using 6 encoder
layers than using only 4. Based on the best teacher forc-
ing trained cross-entropy model, we perform scheduled sam-
pling with probabilities from 0.3 to 0.5. As shown in Table
3, scheduled sampling trained model with sampling probability
0.4 achieves 13.3% on the Eval2000-Switchboard, i.e., an ab-
solute WER improvement of 1.1% over the best teacher forcing
trained model.

On top of the best scheduled sampling trained cross-entropy
model, we perform MBR training using character level, word
level edit-distance with and without softmax smoothing during
N-best generation. Both batch-size and beam-size are set to 4
throughout all our MBR experiments. As shown in Table 4, all
three MBR training setups outperform baseline cross-entropy
model significantly whereas the word level edit-distance based
MBR training is superior to the character level setup since it
matches the WER metric better. With softmax smoothing, the
model improves further by 0.3% and 0.5% on the Switchboard
subset and full Eval2000 set respectively. Overall we obtain an-
other 1.1% absolute improvement over the best scheduled sam-
pling trained model from MBR training.

3.5. Experimental results on Switchboard+Fisher-2000hrs

We then follow the same training steps as in the Switchboard-
300hrs experiments but use the full Switchboard+Fisher-
2000hrs dataset as training data. All the results are summa-
rized in Table 5 and for better comparisons with previous pub-

Table 4: WERs of MBR trained input-feeding models with char-
acter level, word level edit-distance without and with softmax
smoothing trained on Switchboard-300hrs.

Models Method WERs(%)
SWB Total

Sampling NA 13.3 19.0
+MBR character 12.8 18.4
+MBR word 12.5 18.3
+MBR word + softmax smoothing 12.2 17.8

Table 5: WERs of baseline, input-feeding, scheduled sampling
and MBR models trained on Switchboard+Fisher-2000hrs.

Models WERs(%)
SWB CH Total

baseline 10.8 19.6 15.2
input-feeding 9.3 17.3 13.3
+Sampling 8.5 16.6 12.6

+MBR 8.3 16.1 12.2
+MBR w. softmax smoothing 8.3 15.5 11.9

Table 6: Comparing our best model to other hybrid and end-to-
end systems built on the Switchboard-300hrs.

Systems WERs(%)
SWB CH

H
yb

ri
d

DNN+fMLLR+sMBR+Fisher Trigram [5] 12.6 24.1
BLSTM+MMI+Ngram [34] 12.3 -
BLSTM+ivec.+Ngram [35] 11.1 20.9

BLSTM+fMLLR+ivec.+Ngram [36] 10.8 -
BLSTM+ivec.+LFMMI+Fisher 4gram [6] 9.6 19.3

E
nd

-t
o-

en
d Attention Seq2Seq + Trigram [37] 25.8 46.0

BRNN Grapheme CTC + Ngram [11] 20.0 31.8
Acoustics-to-Word + noLM [15] 14.6 23.6

Iterated CTC + Word RNN LM [12] 14.0 25.3
Attention Seq2Seq + noLM (current) 12.2 23.3

lished systems, we also list the results for the CallHome sub-
set of Eval2000. Finally, we compare our best models built
on Switchboard-300hrs and Switchboard+Fisher-2000hrs with
previous published systems in Table 6 and Table 7 respectively
which show our end-to-end systems are highly competitive
among state-of-the-art English conversational speech recogni-
tion systems.

Table 7: Comparing our best model to other hybrid and end-to-
end systems built on the Switchboard+Fisher-2000hrs.

Systems WERs(%)
SWB CH

H
yb

ri
d

BLSTM+ivec.+LFMMI+Fisher 4gram [6] 8.5 15.3
ResNet+ivec.+LFMMI+Fisher 4gram [38] 8.6 15.2
LACE+ivec.+LFMMI+Fisher 4gram [38] 8.5 15.2

ResNet+ivec+ST+Fisher 4gram [39] 8.3 14.9

E
nd

-t
o-

en
d Iterated CTC + Word RNN LM [12] 10.2 17.7

Acoustics-to-Word + noLM [15] 8.8 13.9
Attention Seq2Seq + noLM [27] 8.6 17.8

Attention Seq2Seq + noLM (current) 8.3 15.5

4. Conclusions
In this work, we proposed two improvements to attention based
sequence-to-sequence models for end-to-end speech recogni-
tion systems on the standard Switchboard-300hrs task. Together
with other training strategies such as dropout and scheduled
sampling, our best model achieved WERs of 8.3%/15.5% on the
Switchboard/CallHome subsets of Eval2000 without any exter-
nal language models. Future work includes extending our work
to Mandarin speech tasks and improving attention models with
only text training data.
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