
Postfiltering Using Log-Magnitude Spectrum for Speech and Audio Coding

Sneha Das, Tom Bäckström
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Abstract
Advanced coding algorithms yield high quality signals with
good coding efficiency within their target bit-rate ranges, but
their performance suffer outside the target range. At lower
bitrates, the degradation in performance is because the de-
coded signals are sparse, which gives a perceptually muffled
and distorted characteristic to the signal. Standard codecs re-
duce such distortions by applying noise filling and post-filtering
methods. In this paper, we propose a post-processing method
based on modeling the inherent time-frequency correlation in
the log-magnitude spectrum. The goal is to improve the percep-
tual SNR of the decoded signals and, to reduce the distortions
caused by signal sparsity. Objective measures show an average
improvement of 1.5 dB for input perceptual SNR in range 4 to
18 dB. The improvement is especially prominent in components
which had been quantized to zero.
Index Terms: Quantization noise, Speech modelling, postfil-
tering, noise filling, Time-Frequency correlation

1. Introduction
Speech and audio codecs are integral parts of most audio pro-
cessing applications and recently we have seen rapid develop-
ment in coding standards, such as MPEG USAC [1, 2], and
3GPP EVS [3]. These standards have moved towards uni-
fying audio and speech coding, enabled the coding of super
wide band and full band speech signals as well as added sup-
port of voice over IP. The core coding algorithms withing these
codecs, ACELP and TCX, yield perceptually transparent qual-
ity at moderate to high bitrates within their target bitrate ranges.
However, the performance degrades when the codecs operate
outside this range. Specifically, for low-bitrate coding in the
frequency-domain, the decline in performance is because fewer
bits are at disposal for encoding, whereby areas with lower en-
ergy are quantized to zero. Such spectral holes in the decoded
signal renders a perceptually distorted and muffled characteris-
tic to the signal, which can be annoying for the listener.

To obtain satisfactory performance outside target bitrate
ranges, standard codecs like CELP employ pre- and post-
processing methods, which are largely based on heuristics. In
particular, to reduce the distortion caused by quantization-noise
at low bitrates, codecs implement methods either in the coding
process or strictly as a post-filter at the decoder. Formant en-
hancement and bass post-filters are common methods [4] which
modify the decoded signal based on the knowledge of how and
where quantization noise perceptually distorts the signal. For-
mant enhancement shapes the codebook to intrinsically have
less energy in areas prone to noise and is applied both at the
encoder and decoder. In contrast, bass post-filter removes the
noise like component between harmonic lines and is imple-
mented only in the decoder.

Another commonly used method is noise filling, where
pseudo-random noise is added to the signal [2], since accurate
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Figure 1: Context neighborhood of size C = 10. The previous
estimated bins are chosen and ordered based on the distance
from the current sample.

encoding of noise-like components is not essential for percep-
tion. In addition, the approach aids in reducing the perceptual
effect of distortions caused by sparsity on the signal. The qual-
ity of noise-filling can be improved by parameterizing the noise-
like signal, for example, by its gain, at the encoder and trans-
mitting the gain to the decoder.

The advantage of post-filtering methods over the other
methods is that they are only implemented in the decoder,
whereby they do not require any modifications to the encoder-
decoder structure, nor do they need any side information to be
transmitted. However, most of these methods focus on solving
the effect of the problem, rather than address the cause.

In this paper, we propose a post-processing method to im-
prove signal quality at low bitrates, by modeling the inherent
time-frequency correlation in speech magnitude spectrum and,
investigating the potential of using this information to reduce
quantization noise. The advantages of this approach are that it
does not require the transmission of any side information and
operates using solely the quantized signal as the observation
and the speech models trained offline; Since it is applied at
the decoder after the decoding process, it does not require any
changes to the core structure of the codec; The approach ad-
dresses the signal distortions by estimating the information lost
during the coding process using a source model. The novelties
of this work lies in (i) incorporating the formant information in
speech signals using log-magnitude modeling, (ii) representing
the inherent contextual information in the spectral magnitude of
speech in the log-domain as a multivariate Gaussian distribution
(iii) finding the optimum, for the estimation of true speech, as
the expected likelihood of a truncated Gaussian distribution.

2. Speech Magnitude Spectrum Models
Formants are the fundamental indicator of linguistic content
in speech and are manifested by the spectral magnitude enve-
lope of speech, therefore the magnitude spectrum is an impor-
tant part of source modeling [5, 6]. Prior research has shown
that frequency coefficients of speech are best represented by
a Laplacian or Gamma distribution [7, 8, 9, 10]. Hence, the
magnitude-spectrum of speech is an exponential distribution, as
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Figure 2: Histograms of speech magnitude in (a) Linear domain
(b) Log domain, in an arbitrary frequency bin.
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Figure 3: Training of speech models

shown in Fig. 2 a. The figure demonstrates that the distribu-
tion is concentrated at low magnitude values. This is difficult to
use as a model because of numerical accuracy issues. Further-
more, it is hard to ensure the estimates are positive just by using
generic mathematical operations. We address this problem by
transforming the spectrum to the log-magnitude domain. Since
the logarithm is non-linear, it redistributes the magnitude-axis
such that the distribution of a exponentially distributed magni-
tude resembles the normal distribution in the logarithmic repre-
sentation (Fig. 2 b). This enables us to approximate the distri-
bution of the log-magnitude spectrum using a Gaussian proba-
bility density function (PDF).

In recent years, contextual information in speech has at-
tracted a growing interest [11]. The inter-frame and inter-
frequency correlation information have been explored previ-
ously in acoustic signal processing, for noise reduction [11, 12,
13]. The MVDR and Wiener filtering techniques employ the
previous time- or frequency-frames to obtain an estimate of the
signal in the current time-frequency bin. The results indicate
a significant improvement in the quality of the output signal.
In this work, we use similar contextual information to model
speech. Specifically, we explore the plausibility of using the
log-magnitude to model the context and, representing it using
multivariate Gaussian distributions. The context neighborhood
is chosen based on the distance of the context bin to the bin un-
der consideration. Fig. 1 illustrates a context neighborhood of
size 10 and indicates the order in which the previous estimates
are assimilated into the context vectors.

The overview of the modeling process is presented in Fig. 3.
The input speech signal is transformed to the frequency do-
main by windowing and then applying the short-time Fourier
transform (STFT). The frequency domain signal is then pre-
processed and perceptually weighted using the computed per-
ceptual envelope, similar to CELP [14, 4]. Finally, the con-
text vectors are extracted for each sample frequency-bin, and
then the covariance matrix for each frequency band is estimated,
thus providing the required speech models. We explored con-
text sizes upto 40, which includes approximately four previous
time frames, lower and upper frequency bins, each. Note that
we operate with STFT instead of MDCT which is used in stan-
dard codecs, in order to keep this work extensible to enhance-
ment applications. Expansion of this work to MDCT is ongoing
and informal tests provide insights similar to this paper.
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Figure 4: Histograms of Speech distribution (a) True (b) Esti-
mated: ML (c) Estimated: EL.

3. Problem Formulation
Our objective is to estimate the clean speech signal from the ob-
servation of the noisy decoded signal using the statistical priors.
To this end, we formulate the problem as the maximum likeli-
hood (ML) of the current sample given the observation and the
previous estimates. Assume a sample x has been quantized to
a quantization level Q ∈ [l, u]. We can then express our opti-
mization problem as:

x̂ =arg max
x

P (X|Xc = x̂c) subject to
l≤X≤u

, (1)

where x̂ is the estimate of the current sample, l and u are the
lower and upper limits of the current quantization bins, respec-
tively, and, P (a1|a2) is the conditional probability of a1, given
a2. x̂c is the estimated context vector. Fig. 1 illustrates the
construction of a context vector of size C = 10, wherein the
numbers represent the order in which the frequency bins are in-
corporated. We obtain the quantization levels from the decoded
signal and from our knowledge of the quantization method used
in the codec, we can define the quantization limits; the lower
and upper limits of a specific quantization level is defined mid-
way between previous and subsequent levels, respectively.

To illustrate the performance of Eq. 1, we solved it using
generic numerical methods. Fig. 4 illustrates the results through
distributions of the true speech (a) and estimated speech (b), in
bins quantized to zero. We scale the bins such that the vary-
ing l and u are fixed to 0, 1, respectively, in order to analyze
and compare the relative distribution of the estimates within a
quantization bin. In (b) we observe a high data density around
1, which implies that the estimates are biased towards the upper
limits. We shall refer to this as the edge-problem.

To mitigate this problem, we define the speech estimate as
the expected likelihood (EL) [15, 16], as follows:

x̂ = E[P (X|Xc = x̂c)] subject to
l≤X≤u

. (2)

The resulting speech distribution using EL is demonstrated
in Fig. 4 c, indicating a relatively better match between the
estimated-speech and the true-speech distributions. Finally, to
obtain an analytical solution, we incorporate the constraint con-
dition into the modeling itself, whereby we model the distribu-
tion as a truncated Gaussian PDF [17]. In appendices A & B,
we demonstrate how the solution can be obtained as a truncated
Gaussian. Algorithm. 1 presents an overview of the estimation
method.

4. Experiments and Results
Our objective is to evaluate the advantage of modeling the
log-magnitude spectrum. Since envelope models are the main
method for modeling the magnitude spectrum in conventional
codecs, we evaluate the effect of statistical priors both in terms
of the whole spectrum as well as only for the envelope. There-
fore, besides evaluating the proposed method for the estimation
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Figure 5: Plots representing the improvement in SNR using the proposed method for different context sizes.

Algorithm 1 Estimation of signal from quantized observation

Require: Quantized signal Y , prior-models C
function ESTIMATION(Y, C)

for frame = 1 : N do
for b = 1 : Length(Y (frame)) do

µup, σup ← UpdateStatistics(C, X̂prev)
pdf ← TruncateGaussian(µup, σup, l(b), u(b))

X̂ ← Expectation(pdf)
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Figure 6: Systems overview.

of speech from the noisy magnitude spectrum of speech, we
also test it for the estimation of the spectral envelope from an
observation of the noisy envelope. To obtain the spectral enve-
lope, after transforming the signal to the frequency domain, we
compute the Cepstrum and retain the 20 lower coefficients and
transform it back to the frequency domain. The next steps of en-
velope modeling are the same as spectral magnitude modeling
presented in Sec. 2 and Fig. 3, i.e. obtaining the context vector
and covariance estimation.

4.1. System overview

A general block diagram of the system is presented in Fig. 6.
At the encoder, the signals are divided into frames of 20 ms
with 50% overlap and Sine windowing. The speech input is
then transformed to the frequency domain using the STFT. Af-
ter pre-processing and perceptually weighting the signal by the
spectral envelope, the magnitude spectrum is quantized and en-
tropy coded using arithmetic coding [18]. At the decoder, the re-
verse process is implemented to decode the signal. The decoded
signal is thus corrupted by quantization noise and our purpose
is to use the proposed post-processing method to improve out-
put quality. Note that we apply the method in the perceptually
weighted domain. After post-processing, the estimated speech
is transformed back to the temporal domain by applying the in-
verse perceptual weights and the inverse frequency transform.
Since the focus of this paper is to study spectral magnitude
modeling, we use true phase to reconstruct the signal back to
temporal domain.

4.2. Experimental setup

For training we use 250 speech samples from the training set of
the TIMIT database [19]. The block diagram of the training pro-
cess is presented in Fig. 3. For testing, 10 speech samples were
randomly chosen from the test set of the database. The codec is
based on the EVS codec [20] in TCX mode and we chose the
codec parameters such that the perceptual SNR (pSNR) [20, 4]
is in the range typical to codecs. Therefore, we simulated cod-
ing at 12 different bitrates between 9.6 to 128 kbps, which gives
pSNR values in the approximate range of 4 and 18 dB. Note that
the TCX mode of EVS does not incorporate post-filtering. For
each test case, we apply the post-filter to the decoded signal
with context sizes ∈ {1, 4, 8, 10, 14, 20, 40}. The context vec-
tors are obtained as per the description in Sec. 2 and illustration
in Fig. 1. For tests using the magnitude spectrum, the pSNR
of the post-processed signal is compared against the pSNR of
the noisy quantized signal. For spectral envelope based tests,
the signal-to-Noise Ratio (SNR) between the true and the esti-
mated envelope is used as the quantitative measure.

4.3. Results and analysis

The average of the qualitative measures over the 10 speech sam-
ples are plotted in Fig. 5. Plots (a) and (b) represent the eval-
uation results using the magnitude spectrum and, plots (c) and
(d) correspond to the spectral envelope tests. For both, the spec-
trum and the envelope, incorporation of contextual information
shows a consistent improvement in the SNR. The degree of im-
provement is illustrated in plots (b) and (d). For magnitude
spectrum, the improvement ranges between 1.5 and 2.2 dB over
all the context at low input pSNR, and from 0.2 to 1.2 dB higher
input pSNR. For spectral envelopes, the trend is similar; the im-
provement over context is between 1.25 to 2.75 dB at lower in-
put SNR, and from 0.5 to 2.25 at higher input SNR. At around
10dB input SNR, the improvement peaks for all context sizes.

For the magnitude spectrum, the improvement in quality be-
tween context size 1 and 4 is significantly large, approximately
0.5 dB over all input pSNRs. By increasing the context size we
can further improve the pSNR, but the rate of improvement is
relatively lower for sizes from 4 to 40. Also, the improvement is
considerably lower at higher input pSNRs. We conclude that a
context size around 10 samples is a good compromise between
accuracy and complexity. However, the choice of context size
can also depend on the target device for processing. For in-
stance, if the device has computational resources at disposal, a
high context size can be employed for maximum improvement.

Performance of the proposed method is further illustrated
in Figs. 7- 8, with an input pSNR of 8.2 dB. A prominent ob-
servation from all plots in Fig. 7 is that, particularly in bins
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Figure 7: Sample plots depicting the true, quantized and the
estimated speech signal (i) in a fixed frequency band over all
time frames (ii) in a fixed time frame over all frequency bands.

quantized to zero the proposed method is able to estimate mag-
nitude which is close to the true magnitude. Additionally
from Fig. 7 (ii), the estimates seem to follow the spectral en-
velope, whereby we can conclude that Gaussian distributions
pre-dominantly incorporate spectral envelope information and
not so much of pitch information. Hence, additional modeling
methods for the pitch will be addressed in future work.

The scatter plots in Fig. 8 represent the correlation between
the true, estimated and quantized speech magnitude in zero-
quantized bins for C = 1 and C = 40. These plots further
demonstrate that context is useful in estimating speech in bins
where no information exists. Thus this method can be beneficial
in estimating spectral magnitudes in noise-filling algorithms. In
the scatter plots, the quantized, true and estimated speech mag-
nitude spectrum are represented by red, black and blue points,
respectively; We observe that while the correlation is positive
for both sizes, the correlation is significantly higher and more
defined for C = 40.

5. Discussion and Conclusion
In this work, we investigated the use of contextual informa-
tion inherent in speech for the reduction of quantization noise.
We propose a post-processing method with focus on estimating
speech samples at the decoder, from the quantized signal using
statistical priors. Results indicate that including speech corre-
lation not only improves the pSNR, but also provide spectral
magnitude estimates for noise filling algorithms. While the fo-
cus of this paper was modeling the spectral magnitude, a joint
magnitude-phase modeling method, based on current insights
and the results from an accompanying paper [21], is the natural
next step.

This work also begins to tread on spectral envelope restora-
tion from highly quantized noisy envelopes by incorporating
information for the context neighborhood. In future work we
should explore the interaction between our method and quan-
tization of conventional envelope parameterizations. Addition-
ally, since this method has shown a capacity to restore infor-
mation from areas where no information exists at all, it will be
interesting to see the application of this method to packet-loss
concealment.
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Figure 8: Scatter plots of the true, quantized and estimated
speech in zero-quantized bins for (a) C = 1, (b) C = 40.
The plots demonstrate the correlation between the estimated
and true speech.
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A. Truncated Gaussian PDF
Let us define f1(a) = e

− (a−µ)2
2σ2 and f2(a) = erf(a−µ

σ
√
2
), where

µ, σ are the statistical parameters of the distribution and erf is
the error function. Then, expectation of a univariate Gaussian
random variable X is computed as:

[E(X)]∞−∞ =
1√

2πσ2

∫ ∞

−∞
xf1(x)dx, (3)

Conventionally, when X ∈ [−∞,∞], solving Eq. 3 results in
E(X) = µ. However, for a truncated Gaussian random vari-
able, with l < X < u, the relation is

E(X|l < X < u) =
[E(X)]ul∫ u
l
P (x)dx

=

∫ u
l
xf1(x)dx∫ u

l
f1(x)dx

, (4)

which yields the following equation to compute the expectation
of a truncated univariate Gaussian random variable:

E(X|l < X < u) = µ− σ
√

2

π

[
f1(u)− f1(l)

f2(u)− f2(l)

]
(5)

B. Conditional Gaussian parameters
Let the context vector be defined as x = [x1,x2]T , wherein
x1 ∈ R1X1 represents the current bin under consideration, and
x2 ∈ RCX1 is the context. Then, x ∈ R(C+1)X1, where C
is the context size. The statistical models are represented by
the mean vector µ ∈ R(C+1)X1, and the covariance matrix
Σ ∈ R(C+1)X(C+1), such that µ = [µ1,µ2]T with dimensions
same as x1 and x2, and the covariance as

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (6)

Σij are partitions of Σ with dimensions Σ11 ∈ R1X1, Σ22 ∈
RCXC , Σ12 ∈ R1XC and Σ21 ∈ RCX1. Thus, the updated
statistics of the distribution of the current bin based on the esti-
mated context is [22]:

µup = µ1 + Σ12Σ
−1
22 (x̂c − µ2) (7)

σup = Σ11 −Σ12Σ
−1
22 Σ21. (8)
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[14] T. Bäckström and C. R. Helmrich, “Arithmetic coding of speech
and audio spectra using TCX based on linear predictive spectral
envelopes,” in ICASSP, April 2015, pp. 5127–5131.

[15] E. T. Northardt, I. Bilik, and Y. I. Abramovich, “Spatial compres-
sive sensing for direction-of-arrival estimation with bias mitiga-
tion via expected likelihood,” IEEE Transactions on Signal Pro-
cessing, vol. 61, no. 5, pp. 1183–1195, 2013.

[16] Y. I. Abramovich and O. Besson, “Regularized covariance ma-
trix estimation in complex elliptically symmetric distributions us-
ing the expected likelihood approach part 1: The over-sampled
case,” IEEE Transactions on Signal Processing, vol. 61, no. 23,
pp. 5807–5818, 2013.

[17] N. Chopin, “Fast simulation of truncated Gaussian distributions,”
Statistics and Computing, vol. 21, no. 2, pp. 275–288, 2011.

[18] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal
of research and development, vol. 23, no. 2, pp. 149–162, 1979.

[19] V. Zue, S. Seneff, and J. Glass, “Speech database development at
MIT: TIMIT and beyond,” Speech Communication, vol. 9, no. 4,
pp. 351–356, 1990.

[20] “EVS codec detailed algorithmic description; 3GPP technical
specification,” http://www.3gpp.org/DynaReport/26445.htm.
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