
Compression of End-to-End Models

Ruoming Pang∗, Tara N. Sainath∗, Rohit Prabhavalkar, Suyog Gupta,
Yonghui Wu, Shuyuan Zhang, Chung-cheng Chiu

Google Inc., U.S.A
{rpang,tsainath,prabhavalkar,suyoggupta,yonghui,syzhang,chungchengc}@google.com

Abstract
End-to-end models, which directly output text given speech

using a single neural network, have been shown to be compet-
itive with conventional speech recognition models containing
separate acoustic, pronunciation, and language model compo-
nents. Such models do not require additional resources for de-
coding and are typically much smaller than conventional mod-
els. This makes them particularly attractive in the context of on-
device speech recognition where both small memory footprint
and low power consumption are critical. This work explores
the problem of compressing end-to-end models with the goal
of satisfying device constraints without sacrificing model accu-
racy. We evaluate matrix factorization, knowledge distillation,
and parameter sparsity to determine the most effective methods
given constraints such as a fixed parameter budget.

1. Introduction
There has been growing interest in developing end-to-end mod-
els for the task of automatic speech recognition (ASR). Such
models fold the different modules of a conventional speech
recognition system – the acoustic model (AM), the pronunci-
ation model (PM), and the language model (LM) – into a single
neural network. Examples of such approaches include connec-
tionist temporal classification (CTC) [1] with word targets [2],
the recurrent neural network transducer (RNN-T) [3, 4], the re-
current neural aligner (RNA) [5], and attention-based models
such as listen attend and spell (LAS) [6, 7, 8, 9].

End-to-end approaches to ASR have a number of advan-
tages over conventional ASR systems. One of the main ad-
vantages lies in the simplicity of the overall system. Since
these models do not require external hand-designed resources,
such as pronunciation lexica, models can be built and deployed
with relative ease. Moreover, there is an important advantage
of these techniques which makes them particularly attractive
for deployment on embedded devices [10] which are limited in
terms of the available memory: these models can perform com-
parably with conventional ASR even with only a small fraction
of the total number of parameters required in a conventional
system [4, 9]. While end-to-end models certainly offer size ad-
vantages over conventional models, the best models are still too
large and computationally expensive to run on embedded de-
vices. Further reduction of the number of effective parameters
(and thus computation) can serve to reduce both processing time
and power consumption. With this goal in mind, in the present
work, we explore a variety of approaches to compress end-to-
end models.

Neural network compression has been well explored in
the literature. There are numerous proposals including distil-
lation [11, 12], low-rank matrix factorizaton [13], and model

∗ Equal contribution.

sparsity [14]. To the best of our knowledge, however, these
techniques have not been explored in the context of end-to-
end ASR models. We therefore examine the impact of these
techniques on compressing a specific end-to-end model: the
attention-based encoder-decoder architecture (LAS) [9].

We begin by exploring distillation as a compression
method. Most previous works in ASR (e.g., [15, 16] inter
alia) have explored the use of distillation at the ‘token level’:
the frame-level posterior distribution is ‘transferred’ from the
teacher to the student. However, since end-to-end models are
optimized with a sequence-level criterion, it makes sense to ap-
ply a sequence-level distillation objective. Motivated by recent
end-to-end distillation work in machine translation [17], and
ASR [18, 19], in this work we explore applying a sequence-level
distillation objective to train end-to-end speech models. Next,
we leverage low-rank matrix factorization to compress models.
While these techniques have been explored previously, our goal
in this work is to analyze the importance of this factorization
when it is applied to the encoder network, versus the decoder
network, or both. Finally, we explore applying sparsity [14] to
the parameters in the model, which we find to be effective to
reduce the effective number of parameters in the model.

Our goal is to answer the following research question: given
a specific parameter budget, what is the best approach to com-
press the attention-based encoder-decoder model? We attempt
to answer this question by comparing the above-mentioned
techniques individually, as well as when applied jointly. We
consider three different model sizes: 16M, 32M, and 57M pa-
rameters, which are chosen to study the effectiveness of the
techniques over a range of model sizes. Our experiments are
conducted on a ∼15,000 hour Voice Search task. We find
that for small models, distillation gives a 10% improvement in
WER. For larger models, using a combination of distillation and
factorization gives ∼8% relative improvement. Random spar-
sity is the best for all models, giving more than 10% relative
WER reduction. Finally, when we consider the problem of hav-
ing a fixed number of parameters per layer, we find that factor-
ization of both the encoder and the decoder, results in a 15%
improvement in WER at a comparable model size.

2. LAS Model
The LAS model used for all experiments in this paper uses
the architecture from [9] and is described as follows. The lis-
tener, also known as the encoder network, is akin to an acous-
tic model in a conventional ASR system. This network, takes
the input features, x, and maps them to a higher-order feature
representation henc through a multi-layer LSTM. The output of
the encoder is passsed to an attender, which acts as an align-
ment mechanism, determining which encoder features in henc

should be attended to in order to predict the next output symbol,
yi. The output of the attention module is passed to the speller,

Interspeech 2018
2-6 September 2018, Hyderabad

27 10.21437/Interspeech.2018-1025

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1025.html

i.e., the decoder network, which is akin to the pronunciation
and language models. The decoder, also a multi-layer LSTM,
takes the attention context and the embedding of the previous
prediction, yi−1, in order to produce a probability distribution,
P (yi|yi−1, . . . , y0,x), over the current sub-word unit, yi, given
the previous units, yi−1, . . . , y0, and input, x.

3. Compression Techniques
3.1. Knoweldge Distillation

Knowledge distillation encompasses a class of methods in
which a student network is trained to mimic the behavior of
the teacher network [11, 12]. These two networks differ in
structure: e.g., the student network might contain fewer parame-
ters, or might belong to a different model class than the teacher.
When the student network contains fewer parameters than the
teacher, it is empirically found to be more effective to train the
student network using labels derived from the teacher, rather
than training the network from scratch using ground-truth la-
bels. This process can be seen as compressing the larger teacher
network into a more compact student network.

Many previous ASR works [15, 16] implement distillation
by training the frame-level posterior distribution of the student
to be close to that of the teacher by minimizing the Kullback-
Leibler (KL) divergence between the two distributions. This is
equivalent to standard cross-entropy training, where the target
distribution corresponds to the teachers output:

LKD(θ, θT) = −
|C|∑

c=1

Q(y = c|x; θT) logP (y = c|x; θ) (1)

where, θT corresponds to the parameters in the teacher model
(held fixed) and Q(y = c|x; θT) represents the teacher distri-
bution; θ represents the parameters to be learned in the student
model, and P (y = c|x; θ) represents the student distritbution.
The criterion in Equation 1 transfers the frame-level distribu-
tion at each frame from the teacher to the student. However
an end-to-end model defines a probability distribution over a
sequence of tokens P (y|x) = P (yN , · · · , y1|x), which moti-
vates a modification to the basic approach that we describe in
subsequent sections.

3.1.1. Sequence-level Distillation

The simplest way to apply Equation 1 in the context of end-
to-end models is to compute teacher logits for each step in the
target sequence by feeding back previous ground-truth labels,
and to use these as the target distribution for the student model.
Specifically, for an utterance with N labels in the ground-truth
target sequence y∗1 , · · · , y∗N , we minimize the following:

LTRUTH-KD(θ, θT) = −
N∑

n=1

|C|∑

c=1

Q(yn = c|y∗n−1, · · · , y∗0 , x; θT)

× logP (yn = c|y∗n−1, · · · , y∗0 , x; θ) (2)

where, y∗0 = 〈sos〉 is a special label which indicates the start of
the sentence and is fed in to the model at the first step.

However, since we are optimizing for a sequence-level end-
to-end task, it might be better to mimic the teacher distribution
at the sequence level. Motivated by recent work on sequence-
level distillation in the context of end-to-end machine transla-
tion [17], in this work, as an alternative to frame-level distilla-
tion, we compute a set of hypotheses from the teacher model
using beam-search [20] and distill towards these hypotheses.

Specifically, we represent by yi ∈ H, for 1 ≤ i ≤M , the set of
hypotheses decoded from the teacher model using beam search,
ordered by decreasing probability, so that: Q(yi|x) > Q(yj|x)
for i < j. We assume that the hypothesis, yi consists of Ni tar-
gets: yi = [yi1, · · · ,yiNi

]. For each hypothesis yi, we can
compute distillation loss by teacher forcing on yi:

LHYP-KD(θ, θT |yi
) = −

Nn∑

n=1

|C|∑

c=1

Q(yn = c|yi
n−1, · · · ,y

i
0,x; θT)

× logP (yn = c|yi
n−1, · · · ,y

i
0,x; θ) (3)

Our first approach is simply distillation with the teacher’s
top hypothesis (i.e., y1):

LTOP-KD(θ, θT) = LHYP-KD(θ, θT |y1
) (4)

More generally, we can distill towards all hypotheses in
the beam, rather than the top one. If we denote by α, the to-
tal probability of all hypotheses in the beam search decoding:
α =

∑
yi∈HQ(yi|x; θT), and Q′(yi|x; θT) = Q(yi|x;θT)

α
,

then we can optimize the sequence-level KL divergence be-
tween the teacher and the student as follows:

LBEAM-KD(θ, θT) = −
∑

yi∈H
Q
′
(y

i|x; θT)× LHYP-KD(θ, θT |yi
) (5)

3.1.2. Pre-training the Student Network

In the distillation formulations in Equation 4 and 5, the student
is never trained directly with the ground-truth targets. Thus,
if the teacher makes a mistake this can be carried over to the
student. Previous work has shown that distillation performance
can be improved by including a cross-entropy loss between the
student and ground-truth targets in the objective function [17].
As an alternative to employing a dual objective function, which
would require tuning the mixing weight between the two objec-
tives, in this work we consider initializing the student from a
CE-trained model trained partially to convergence. The choice
of only using a partially trained model is based on the intuition
that the pre-training is only required to get a reasonable initial-
ization which can then be fine-tuned during the distillation pro-
cess, but is not completely influenced by the initial CE-training
process, similar in spirt to discriminative pre-training [21].

3.2. Factorization

In this section, we describe our approach for applying a low-
rank matrix factorization to LSTM layers in the encoder, which
follows the work in [22] for conventional LSTM CE-trained
models. A standard LSTM [23] layer in the network, can be
described by the following equations, for all time-steps t =
1, · · · , T :

it = σ(Wixxt +Wimmt−1 + bi) (6)
ft = σ(Wfxxt +Wfmmt−1 + bf) (7)
ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (8)
ot = σ(Woxxt +Wommt−1 + bo) (9)
mt = ot � h(ct) (10)

where it, ft, ct and ot denote the input, forget, memory cell and
output gate activations at time t; xt is the input at step t; ct is the
cell state; and mt is the output of the LSTM layer. The various

28

matrices W are the parameters of the model, e.g., Wix is the
weight matrix from the input gate to the input. Finally,� repre-
sents an element-wise dot product, σ(·) is the sigmoid function,
and g and h are suitable activation functions such as tanh. We
replace the standard output computation in Equation 10 with a
low-rank factorized representation:

mt =Wmc(ot � h(ct)) (11)

where, Wmc, of shape |m| × |c|, projects the cell output to a
lower dimension than the cell state: |m| << |c|. Typically, |m|
is chosen experimentally [24].

In this work, we utilize multiple stacked LSTM layers in
both the encoder network, as well as in the decoder network.
Thus, we investigate both an appropriate choice of |m| and |c|
as well as examining the effectiveness of such a factorization in
the encoder network and the decoder network to examine how
it impacts performance at a given parameter budget.

3.3. Sparsity

Pruning neural network models to remove the less salient con-
nections in the network has been demonstrated as an effective
method for model compression [14, 25, 26]. Model pruning
seeks to introduce a sparse structure into the various weight
matrices in the network, thus reducing the model size by virtue
of sparse matrix storage. We follow the gradual pruning ap-
proach [14] and prune the LSTM layers of the encoder and the
decoder during training using the following sparsity function:

st = sf

(
1−

(
1− t− t0

tf − t0

)3
)

(12)

Pruning starts at training step t0, terminating at step tf when
the target sparsity sf is achieved. At training step t ∈ [t0, tf],
the smallest magnitude weights are masked to zero to achieve
the sparsity level st. Note that this method of model pruning
induces unstructured sparsity in the weight matrices, i.e., the
distribution of the zero-valued weights is unconstrained.

4. Experimental Details
Our experiments are conducted on a ∼15,000 hour training set
consisting of 22 million English utterances. The training ut-
terances are anonymized and hand-transcribed, and are repre-
sentative of Google’s voice search traffic. Multi-style train-
ing (MTR) data are created by artificially corrupting the clean
utterances using a room simulator, adding varying degrees of
noise and reverberation with an average SNR of 12dB [27].
The noise sources are drawn from YouTube and daily life
noisy environmental recordings. We report results on a set
of ∼14,800 anonymized, hand-transcribed Voice Search utter-
ances extracted from Google traffic.

All experiments use 80-dimensional log-mel features, com-
puted with a 25-ms window and shifted every 10ms. Similar
to [28, 29], at the current frame, t, these features are stacked
with 2 frames to the left and downsampled to a 30ms frame rate.
The encoder network architecture consists of 5 unidirectional
LSTM layers [23], with the size as specified in the Section 5.
Following our previous work [9], all models in our experiments
employ multi-head attention [30] with four attention heads. The
decoder network is a 2 layer LSTM with the size as specified in
Section 5. No external LM is used in this work. All networks
are trained to predict 4,096 word pieces [31] which are derived
using a large corpora of text transcripts.

Unless specified otherwise, all neural networks are trained
to optimize the standard cross-entropy criterion, using syn-
chronous stochastic gradient descent (SGD) optimization [32]
with Adam [33] and are trained using TensorFlow [34]. We use
synchronous replicated training with 16 P100 GPUs and per-
GPU batch size of 128. Models are trained to >200K steps,
at a learning rate of 8e-4 with linear warm-up and exponen-
tial decay starting at 50K steps. Following [9], we apply la-
bel smoothing [35] to all factorization and sparsity models, as
well as while training the teacher models, but we do not apply
minimum word error rate (MWER) training [36] or scheduled
sampling [37], which are left as future work.

5. Results
5.1. Distillation Exploration

Our first set of experiments are aimed at understanding the be-
havior of the various proposed distillation objectives described
in Section 3. For this experiment, our teacher model contains
110M parameters (5x1400 encoder, 2x1024 decoder) while the
student is a 16M parameter model (5x400 encoder, 2x512 de-
coder). As can be seen in Table 1, distilling using the ground
truth labels (LTRUTH-KD(θ, θT)) results in a WER of 10.6%,
a small gain over using no distillation at all (11.0%). Dis-
tilling towards the top hypothesis obtained using beam search
(LTOP-KD(θ, θT)) improves performance slightly to 10.5%, but
the improvement is small; distilling towards all hypotheses in
the beam (LBEAM−KD(θ, θT)) performs comparably to dis-
tilling towards the top hypothesis. We note that performance did
not appear to be sensitive to the beam width forM = 2, 4, or 8.

Next, we explore distillation towards the top hypothesis af-
ter beam search decoding, where we initialize the student model
from an early checkpoint of the model trained with ground truth
targets (i.e., the model which achieved 11.0% in Table 1), which
improves the WER to 10.0%. Overall, with distillation we can
achieve a WER of 10.0%, a 9% relative improvement compared
to a model of the same size trained without distillation (11.0%).
For the remainder of this paper, all distillation results are re-
ported by first initializing the student network with a CE-trained
model, and distilling towards ground-truth targets (which does
not necessitate beam search decoding and is thus much faster).

Table 1: WER Results With Distillation.

Distillation From WER
no distillation 11.0
ground truth 10.6

top beam 10.5
full beam 10.5

top beam + student init. 10.0

5.2. Matrix Factorization

Most of the parameters for the models considered in this work
lie in the encoder network, rather than in the decoder network.
Therefore, in these initial experiments, factorization is only ap-
plied to the encoder layers. In order to study the tradeoff be-
tween encoder versus the decoder size, we vary the size of the
projection layer in the encoder, and the number of LSTM cells
in the decoder, but keep the overall model size within a fixed
budget. The results in Table 2 show that under the same pa-
rameter count constraint, applying factorization on encoder im-
proves model quality significantly for all model sizes except for

29

the model with 16M parameters. Also, for all model configu-
rations, different encoder/decoder sizes perform comparably so
long as the total number of parameters in the model is similar.

Table 2: WER Results With Factorization.

Encoder Proj Decoder Total WER (%)
Size Size Size Params
400 - 512 16M 11.0
512 128 600 16M 11.3
400 256 660 16M 11.3
660 - 660 32M 8.6

1024 256 660 32M 8.1
800 256 840 32M 8.2
700 - 1024 57M 7.9

1400 256 1024 57M 7.3
1024 256 1300 57M 7.4

5.3. Combining Compression Techniques

Now that we have explored how distillation and factorization
behave individually, in this section, we combine these tech-
niques and explore which combination of techniques works best
for a given model size and layer size. We also compare these
approaches to sparsity-based compression.

5.3.1. Comparison on Model Size Constraint

Table 3 compares WER for different compression techniques,
across three different model sizes. In the sparsity experiments,
we prune weights from the baseline 110M-parameter model and
the model sizes are computed as the number of non-zero param-
eters. For a model trained to achieve st sparsity, the compres-
sion ratio is estimated using the following:

η =
1

1− st + 1
32

(13)

In the equation above, the factor 1
32

represents the overhead of
sparse matrix storage. We assume a bit-mask sparse matrix rep-
resentation which requires 1 bit per matrix element indicating
whether the element is nonzero, and a vector containing all the
nonzero matrix elements stored as a 32-bit float. Also note that
we apply sparsity to only the LSTM layers of the encoder and
the decoder, and do not prune the attention parameters.

Random sparsity gives the largest improvement individu-
ally, but of course requires having specialized hardware. In the
absence of this, for small models, distillation appears to be the
best choice, while factorization appears to be the best choice
for larger models. Finally, for 32M and 57M parameter models,
combining factorization with distillation improves performance
over using either method individually. However, incorporating
sparsity in addition to these does not seem to be better than ap-
plying sparsity alone.

Table 3: WER with Compression Techniques

Method 16M 32M 57M 110M
Base 11.0 8.6 7.9 6.5

Factorization (F) 11.3 8.1 7.3 -
Distillation (D) 10.0 8.1 7.5 -

Sparsity (S) 8.0 6.7 6.4 -
F + D - 7.9 7.2 -

F + D + S - 7.2 7.0 -

5.3.2. Comparison on Layer Size Constraints

Hardware accelerators for embedded devices usually have a
small amount of SRAM. Fitting all parameters of a layer into
SRAM would make computation more efficient as the compu-
tation can be batched across timesteps. In this section we build
on the conclusions drawn from our experiments, and repeat our
evaluation with a constraint of 4M parameters per-layer, thus
simulating performance given some SRAM. Model evaluated in
this section are trained on 8×8 Tensor Processing Units (TPU)
slices with global batch size 4096. Since the sparsity operation
is not supported on the TPU, we emit those experiments here.

Our base model, E1, with 4M parameters per layer has 5
encoder layers and 2 decoder layers (‘5+2’). Each encoder layer
has 700 hidden units and each decoder layer has 512 units. It
has a total of 29M parameters (including attention and softmax
layers) and obtains a WER of 8.6%. In the factorization models
we apply projection to both encoder and decoder layers so that
every layer has no more 4M parameters. Each encoder layer has
1400 hidden units and projection size of 256 and each decoder
layer has 1024 hidden units and the same projection size. As
can be seen in Table 4, we find that both distillation (E2) and
factorization (E3) improve WER. Applied together (E4), they
improve WER to 7.2%, with most of the improvements in this
case coming from factorization.

Next, we evaluated a model 2 times larger with deeper
stacks: 10 encoder layers and 4 decoder layers, retaining the
constraint of 4M parameters per layer (E5). It has similar num-
ber of parameters as a model with wider but shallower stacks
(8M parameters per layer) (E6) and comparable WER at 7.1%
to the model with factorization and distillation, which is 2 times
smaller (E4).

In contrast, our ‘large’ model has 9-16M params per layer
and WER of 6.4% (E7). Applying factorization on the deep
model (E8), however, improves its WER to 6.1%, which is even
better than our ‘large’ model E7. We have yet been able to find a
large model with a better WER, and are thus unable to evaluate
distillation on this deep factorized model.

Table 4: WER, Limited by Parameters Per Layer. Unless oth-
erwise stated, there are 5 encoder layers and 2 decoder layers
and each layer has no more than 4M parameters. ‘10+4’ means
10 encoder layers and 4 decoder layers.

Exp-ID Set-up Total # WER
Params

E1 Base 29M 8.6
E2 Distillation 29M 8.3
E3 Factorization 28M 7.3
E4 F + D 28M 7.2
E5 Deep (10+4) 58M 7.1
E6 Wide (8M params/layer) 58M 7.1
E7 Large (<16M params/layer) 110M 6.4
E8 Deep + Factorization (10+4) 53M 6.1

6. Conclusions
In this work we empirically evaluate various techniques to com-
press end-to-end ASR models for deployment on embedded
devices. Our experiments show that distillation, factorization,
and sparsity are effective under different scenarios and that the
combination of these techiniques results in larger improvements
than those obtained using any single technique alone.

30

7. References
[1] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Con-

nectionist Temporal Classification: Labeling Unsegmented Se-
quence Data with Recurrent Neural Networks,” in Proc. ICML,
2006.

[2] H. Soltau, H. Liao, and H. Sak, “Neural Speech Recognizer:
Acoustic-to-Word LSTM Model for Large Vocabulary Speech
Recognition,” in Proc. Interspeech, 2017.

[3] A. Graves, “Sequence Transduction with Recurrent Neural Net-
works,” CoRR, vol. abs/1211.3711, 2012.

[4] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring Architectures,
Data and Units for Streaming End-to-End Speech Recognition
with RNN-Transducer,” in Proc. ASRU, 2017.

[5] H. Sak, M. Shannon, K. Rao, and F. Beaufays, “Recurrent Neu-
ral Aligner: An Encoder-Decoder Neural Network Model for Se-
quence to Sequence Mapping,” in Proc. Interspeech, 2017.

[6] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, Attend and
Spell,” CoRR, vol. abs/1508.01211, 2015.

[7] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Proc.
NIPS, 2015.

[8] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Ben-
gio, “End-to-end attention-based large vocabulary speech recog-
nition,” in Proc. ICASSP.

[9] C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina, N. Jaitly,
B. Li, J. Chorowski, and M. Bacchiani, “State-of-the-Art
Speech Recognition With Sequence-to-Sequence Models,” in
Proc. ICASSP, 2018.

[10] I. McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, K. Rao,
D. Rybach, O. Alsharif, H. Sak, A. Gruenstein, F. Beaufays,
and C. Parada, “Personalized Speech Recognition on Mobile De-
vices,” in Proc. ICASSP, 2016.

[11] C. Bucila, R. Caruana, and A. Niculescu-Mizi, “Model Compres-
sion,” in Knowledge Discovery and Data Mining (KDD), 2006.

[12] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” CoRR, vol. abs/1503.02531, 2015.

[13] R. Prabhavalkar, O. Alsharif, A. Bruguier, and I. McGraw, “On
the Compression of Recurrent Neural Networks with an Applica-
tion to LVCSR acoustic modeling for Embedded Speech Recog-
nition,” in Proc. ICASSP, 2016.

[14] M. Zhu and S. Gupta, “To Prune, or not to Prune: Exploring the
Efficacy of Pruning for Model Compression,” in Proc. NIPS Work-
shop on Machine Learning of Phones and other Consumer De-
vices, 2017.

[15] A. Waters and Y. Chebotar, “Distilling knowledge from ensembles
of neural networks for speech recognition,” in Proc. Interspeech,
2016.

[16] L. Lu, M. Guo, and S. Renals, “Knowledge Distillation for Small-
footprint Highway Networks,” in Proc. ICASSP, 2017.

[17] Y. Kim and A. Rush, “Sequence-Level Knowledge Distillation,”
in Proc. EMNLP, 2016.

[18] J. H. M. Wong and M. J. F. Gales, “Sequence Student-Teacher
Training of Deep Neural Networks,” in Proc. Interspeech, 2016.

[19] R. Takashima, S. Li, and H. Kawai, “An investigatin of a knowl-
edge distillation method for ctc acoustic models,” in in Proc. In-
terspeech, 2018.

[20] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proc. Of NIPS, 2014.

[21] H. Soltau, H.-K. Kuo, L. Mangu, G. Saon, and T. Beran, “Neural
Network Acoustic Models for the DARPA RATS Program,” in
Proc. Interspeech, 2013.

[22] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory
Recurrent Neural Network Architectures for Large Scale Acoustic
Modeling,” in Proc. Interspeech, 2014.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov 1997.

[24] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ram-
abhadran, “Low-Rank Matrix Factorization for Deep Neural Net-
work Training with High-Dimensional Output Targets,” in Proc.
ICASSP, 2013.

[25] S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen, “Ex-
ploring sparsity in recurrent neural networks,” CoRR, vol.
abs/1704.05119, 2017.

[26] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural network with pruning, trained quantization and
huffman coding,” CoRR, vol. abs/1510.00149, 2015.

[27] C. Kim, A. Misra, K. Chin, T. Hughes, A. Narayanan, T. N.
Sainath, and M. Bacchiani, “Generated of large-scale simulated
utterances in virtual rooms to train deep-neural networks for far-
field speech recognition in google home,” in Proc. Interspeech,
2017.

[28] G. Pundak and T. N. Sainath, “Lower Frame Rate Neural Network
Acoustic Models,” in Proc. Interspeech, 2016.

[29] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and Accurate
Recurrent Neural Network Acoustic Models for Speech Recogni-
tion,” in Proc. Interspeech, 2015.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You
Need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[31] M. Schuster and K. Nakajima, “Japanese and Korean voice
search,” 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2012.

[32] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng,
“Large Scale Distributed Deep Networks,” in Proc. NIPS, 2012.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. of ICLR, 2015.

[34] M. Abadi et al., “TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Distributed Systems,” Available online:
http://download.tensorflow.org/paper/whitepaper2015.pdf, 2015.

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Architecture for Computer Vision,” in
Proc. CVPR, 2016.

[36] R. Prabhavalkar, T. N. Sainath, Y. Wu, P. Nguyen, Z. Chen, C. C.
Chiu, and A. Kannan, “Minimum Word Error Rate Training for
Attention-based Sequence-to-sequence Models,” in Proc. ICASSP
(accepted), 2018.

[37] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sam-
pling for sequence prediction with recurrent neural networks,” in
Proc. NIPS, 2015.

31

