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Abstract
Noise statistics and speech spectrum characteristics are the essen-
tial information for the single channel speech enhancement. The
signal processing-based methods mainly rely on noise statistics
estimation. They perform very well for stationary noise, but
have remained difficult to cope with non-stationary noise. While
the deep learning-based methods mainly focus on the perception
on the spectrum characteristics of speech and have a capacity in
dealing with non-stationary noise. However, the performance
would degrade dramatically for the unseen noise types, which
could be due to the over-reliance on data and the ignorance to
domain knowledge of signal process. Obviously, the hybrid sig-
nal processing/deep learning scheme may be a smart alternative.
In this paper, we incorporate the powerful perceptual capabilities
of deep learning in the conventional speech enhancement frame-
work. Deep learning is used to estimate the speech presence
probability and the update factor of noise statistics, which are
then integrated into the Wiener filter-based speech enhancement
structure to enhance the desired speech. All components are
jointly optimized by a spectrum approximation objective. Sys-
tematic experiments on CHiME-4 and NOISEX-92 demonstrate
the proposed hybrid signal processing/deep learning approach to
noise suppression in noise-unmatched and noise-matched condi-
tions.
Index Terms: speech enhancement, noise tracking, deep learn-
ing, signal processing.

1. Introduction
In real-world environments, the acquired speech signals are
inevitably corrupted by various noises and reverberation. These
degradations are known to significantly degrade the intelligibility
and quality of speech [1,2], and also deteriorate the performance
of automatic speech recognition (ASR) [3–5]. To cope with
such acoustic environments, it is essential to establish effective
speech enhancement technologies. Various techniques including
signal processing and deep learning have been applied to speech
enhancement.

Speech signals are inherently sparse in the time-frequency
domain, which allows for continuous tracking and reduction of
background noise [6]. To implement the noise-reduction filters,
noise statistics are usually required and need to be continuously
estimated [7–11]. Temporal moving-average over time frames
is a common way to the estimation of noise statistics, in which
a voice activity detector (VAD) is usually used to decide to up-
date/hold the noise statistics. While spotting time instants and
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frequency bins without/with active speech components based on
speech presence probability (SPP) is a finer way, which can ob-
tain more accurate noise power spectral density (PSD). However,
these methods often assume that noise is stationary or slowly
varying, which is hard to be met in real-world environments. To
deal with this issue, Martin proposed a minimum statistic-based
method to track the spectral minima of the noisy signal per fre-
quency bin [8]. Cohen improved the minimum statistic approach
and proposed a so-called minima controlled recursive averaging
(MCRA) in which the noise estimate is obtained by SPP-based
smoothing-average of PSD [10,12], and the SPP is controlled by
the principle of minimum statistics tracking. Hendriks proposed
minimum mean-squared error (MMSE) based noise PSD track-
ing approaches and improved the performance for non-stationary
noise sources [13, 14]. Although these approaches achieve re-
liable performance in non-stationary noise conditions, speech
enhancement in real-world environments is still a challenging
task and its performances are far from being satisfactory.

Owing to the powerful perceptual capabilities of deep learn-
ing to speech and noise, recently the deep learning-based speech
enhancement has achieved remarkable performance improve-
ments over conventional signal processing methods [15, 16],
especially when noise is non-stationary or the signal-to-noise
ratio (SNR) is low. A typical supervised speech enhancement
system usually uses a trained deep network to directly cast noisy
features into certain ideal masks or magnitude spectrograms of
interest frame-by-frame. These approaches rely largely on the
data-driven principle to perform noise-reduction and ignore the
domain knowledge of signal process. When it comes to an un-
matched acoustic environments, such as unseen noise types and
SNRs, the performances would degrade dramatically due to the
noise overestimation or underestimation. While these estimation
errors could be “averaged out” by calculating the noise statistics
as the conventional noise tracking framework does.

The combination of signal processing and deep learning tech-
niques may be the more advisable strategy for speech enhance-
ment. In this paper, we propose a novel deep noise tracking net-
work (DNTN) that consists of a gated recurrent unit (GRU) [17]
and a feed-forward network. It incorporates the powerful per-
ceptual capabilities of deep learning in the conventional speech
enhancement framework. The GRU is used to estimate the SPP
from the noisy features, and the long-term state of GRU com-
bined with the current noisy features feed into the feed-forward
network to estimate the update factor of noise statistics. A proven
temporal moving-average technique are then used to update the
PSD of noise signals with the estimated SPP and update factor.
Finally, a Wiener filter is established to extract the desired speech
and attenuate the annoying noise. All components are jointly
optimized by directly minimizing the spectral distance between
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the enhanced speech and the desired speech.

2. Signal Model and Problem Formulation
We consider a scenario where a single point-like speech source is
captured by a single microphone in a reverberant room. Let s(k)
and v(k) denote speech and uncorrelated additive noise signals,
respectively, where k is a discrete-time index. The observed
signal is then given by

x(k) = g(k) ∗ s(k) + v(k) = y(k) + v(k), (1)

where ∗ denotes a convolution operator, g(k) is the channel
impulse response. y(k) = g(k)∗s(k) is the noise-free speech
component. Let us assume that all signals are zero-mean random
process. In the short-time Fourier transform (STFT) domain, the
Eq (1) can be written as

x(f, t) = y(f, t) + v(f, t), (2)

where f and t are the frequency and time-frame indexes, respec-
tively.

Technically, speech enhancement involves not only noise
reduction but also dereverberation. However, here we only focus
on noise reduction. So our aim is to recover speech signal
y(f, t) and reduce the noise signal v(f, t) by applying a linear
filter h(f, t) to the observation x(f, t). The Wiener filter can
be considered as one of the most fundamental noise reduction
approaches and many algorithms are closely connected to this
technique [18]. Assuming that speech signals and noise signals
are uncorrelated, the general form of the Wiener filter gain is
written as

h(f, t) =
φyy(f, t)

φyy(f, t) + φvv(f, t)
, (3)

where φvv(f, t) are the PSD of noise signals defined as

φvv(f, t) = E {v(f, t)v∗(f, t)} , (4)

where ∗ denotes a complex conjugate operator. Since noise
signals and speech signals are assumed to be uncorrelated, the
PSD of the desired speech can be calculated as

φyy(f, t) = E {y(f, t)y∗(f, t)} = φxx(f, t)− φvv(f, t), (5)

where φxx(f, t) = E {x(f, t)x∗(f, t)} is the PSD of the ob-
served signals, and E{·} denotes a mathematical expectation
operator. To meet real-time requirements in practice, temporal
recursive smoothing is usually used to approximate the mathe-
matical expectations involved in the previous PSDs [6]. In other
words, at time frame t, the PSDs of the noise signals and the
observed signals are updated recursively as

φ̂vv(f, t) = α̃v(f, t)φ̂vv(f, t− 1) + (1− α̃v(f, t))x(f, t)x
∗(f, t)

φ̂xx(f, t) = αx(f, t)φ̂xx(f, t− 1) + (1− αx(f, t))x(f, t)x
∗(f, t),

(6)
where 0 6 αx(f, t) 6 1 and 0 6 α̃v(f, t) 6 1 are the smooth-
ing factor of the PSDs of the observed signals and the noise
signals, respectively. They are essential to correctly update the
observed and noise signals PSDs. In practice, αx(f, t) is usu-
ally set to an appropriate constant αx to reach a compromise
between smoothing the noise signals and tracking the speech
signals. While α̃v(f, t) is a time-varying frequency-dependent
smoothing factor. It should be small enough when the speech
is absent so that the noise changes can be quickly followed, but
when the speech is present, it should be sufficiently large to avoid
the overestimation of noise PSD. Obviously, α̃v(f, t) is closely
related to the detection of speech presence/absence. The SPP
p(f, t) is commonly utilized to adjust it as follows [6]

α̃v(f, t) = αv + (1− αv)p(f, t), (7)
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Figure 1: The structure of conventional speech enhancement.
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Figure 2: The structure of the proposed DNTN.

where αv ∈ [0, 1) determines the update factor of noise PSD
when speech is absent. In conventional speech enhancement, it
is commonly set to a constant based on the assumption that noise
is stationary, which is hard to be met in practice.

3. A Hybrid Signal Processing/Deep
Learning Approach

Figure 1 illustrates a block diagram of the general structure of
most conventional speech enhancement algorithms [19]. In this
scheme, the noise PSD estimation is one of the most important
components, since it largely determines the amount of residual
noise in the output of the Wiener filter [6]. A common approach
to estimate the noise PSD is to average past spectral power values
using a time-varying smoothing factor that is adjusted by the
SPP [8, 9]. But when the SNR is low or noise is non-stationary,
it is very hard to obtain the accurate SPP by conventional signal
processing techniques, which restricts the tracking capability of
the noise estimator in case of varying noise spectrum [20].

Deep learning has a powerful perceptual ability to speech
and noise. To address the limitations of conventional signal
processing methods, we propose a hybrid scheme, where we use
deep learning to replace the SPP estimators that have traditionally
been hard to correctly tune, while use basic signal processing
building blocks for the typical PSD update and Wiener filtering.
Deep learning and signal processing modules are combined
into an organic whole and performed in an end-to-end manner
instead of a separate or pipeline manner. In other words, the
deep learning model is jointly optimized by the errors of the final
Wiener filtering output rather than another separate optimization
objective, such as ideal SPP. And there is no need to train the
deep learning model separately.

Figure 2 illustrates the structure of the proposed hybrid
scheme. The whole scheme closely follows the general structure
of conventional speech enhancement algorithms as shown in
Figure 1. We utilize a two-layers of GRU and a one-layer of
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feed-forward network to construct a DNTN. The DNTN takes the
responsibility of the SPP/VAD estimator in Figure 1. Specifically,
a sigmoid output layer following the GRU generates a 1 × F
vector of [0, 1] element, which will be used as the SPP p(f, t) of
the current frame to adjust the smoothing factor of noise PSD.
The long-term states of the GRU combined with the current
frame of noisy features feed into the feed-forward network to
estimate αv of [0, 1] through a sigmoid output layer. After
obtaining αv and p(f, t), we can calculate the smoothing factor
α̃v(f, t) of the noise PSD by Eq (7). Then the PSDs of the noise
signals and observed signals can be updated according to Eq (6),
and an optimal Wiener filter is established by Eq (3). Finally,
we apply the established Wiener filter to the observed signals to
obtain the desired speech signals as follows

ỹ(f, t) =
φxx(f, t)− φvv(f, t)

φxx(f, t)
x(f, t). (8)

Speech enhancement is aimed at recovering speech signal
y(f, t) from the noise signals v(f, t). Hence, we use an MSE-
based magnitude approximation objective to jointly optimize all
components.

J =
1

T

T∑

t=0

F∑

f=0

|ỹ(f, t)− y(f, t)|2, (9)

where |·| denotes the absolute value operator in the complex
domain, while F and T are the numbers of frequency bins and
time frames, respectively.

4. Experiments
4.1. Dataset and Evaluation Metrics

We apply the proposed DNTN to single channel speech enhance-
ment to examine its effectiveness and systematically evaluate
its performances on the CHiME-4 [21] and NOISEX-92 [22]
corpora. The CHiME-4 corpus consists of “real data” and “sim-
ulated data”. The “real data” is recorded in 4 real noisy environ-
ments1 and uttered by actual talkers. The “simulated data” has
been generated by artificially mixing clean speech data with the
real-world noise backgrounds, which means that the noise-free
speech component in the noisy signals is known. Therefore, the
“simulated data” can be employed to train the proposed DNTN.
Although each utterance in the CHiME-4 corpus consists of 6
channels, we randomly choose a channel signal for the following
experiments. The NOISEX-92 contains 15 common types of
noise2 in real-world environments, with a length of about 4 min-
utes for each. We mention that these noises are quite different
from those in the CHiME-4 corpus. All audio data were sampled
at 16 kHz and 16 bits.

The training set of CHiME-4 consists of 1,600 real and 7,138
simulated utterances in the 4 noisy environments. We choose
the “simulated data” as our training set. Similarly, we choose
the “simulated data” (410 (simulated)× 4 (environments)) in the
development set of CHiME-4 as our development set. For testing,
we randomly choose 1,000 clean speech utterances from the
WSJ0 development part. They are randomly mixed with 15 types
of noise from NOISEX-92 to generate 1,000 mixture utterances
at a continuous SNR from 0dB to 10dB. These noises are unseen
in the training set, which is used to test the generalization of the
proposed DNTN to the unmatched noise. While mixing speech

1bus, cafe, pedestrian area, and street junction.
2babble, factory1, buccaneer1, destroyerengine, white, machinegun,

pink, volvo, hfchannel, factory2, buccaneer2, destroyerops, f16, leopard,
m109.

and noise, in order to ensure that the different parts of each
noise utterance are mixed with the clean speech utterances, we
randomly cut each noise utterance of NOISEX-92 into different
parts according to the time length of a speech utterance.

We take the source to interference ratio (SIR), source to
artifacts ratio (SAR), source to distortion ratio (SDR) [23] and
perceptual evaluation of speech quality (PESQ ∈ [−0.5, 4.5])
[24] as evaluation metrics. SIR, SAR and SDR measure the ratios
of source to interference, artifacts and distortion, respectively,
and can be computed by the BSS Eval toolbox [23]. The PESQ
score quantifies the objective speech quality. All evaluation
metrics are the weighted means of all testing clips weighted by
their lengths. Higher values mean the better performances.

4.2. Comparison Methods and Configurations

Deep learning-based supervised speech enhancement usually
learns a mapping function from noisy features to certain ideal
masks or magnitude spectrograms of interest. In this paper, we
take mask-approximated and magnitude-approximated super-
vised speech enhancement methods as the comparisons. The
mask-approximated approach uses a two-layers of GRU to es-
timate an ideal ratio mask (IRM) [25] from the noisy features,
denoted as “GRU-IRM”, while the magnitude-approximated ap-
proach uses a two-layers of GRU to estimate the magnitude
spectrograms of target speech from the noisy features, denoted
as “GRU-MAG”. Since the IRM is bounded between 0 and 1,
GRU-IRM uses a sigmoid function as the activation function of
the output layer. Instead of directly predicting the magnitude
spectrograms of target speech, GRU-MAG applies a sigmoid
output to the mixture magnitude spectrograms as a masking op-
eration to generate the magnitude spectrograms of the desired
speech, which can be regarded as indirect masking [26]. The
proposed DNTN, besides the similar GRU structure for speech
perception, also has a feed-forward network with one hidden lay-
er of 512 rectified linear units (ReLUs) [27] for noise perception.
The additional feed-forward network has a sigmoid output of
one unit, while the output layers of GRU networks of GRU-IRM,
GRU-MAG and DNTN have 256 units according to the STFT
points. Each GRU layer of GRU-IRM, GRU-MAG and DNTN
has 512 cells. In addition, we apply batch normalization to the
input-to-hidden transitions of each GRU layer, which can lead
to a faster convergence of the training criterion [28].

In following experiments, we use the 256-dimension log
power spectrum as the input feature, and each dimension of in-
put features is normalized to have zero mean and unit variance
over the training set. All networks are trained from a random
initialization by the Adam optimizer [29] with a learning rate
of 0.001. The maximum epoch is set to 25 and the size of mini-
batch is set to 256. The spectral representation is extracted by
applying a 512-point STFT to the mixture signals with 32-ms
frame length that windowed by a 512-point Hamming window
with 50% overlap. The 256-dimension log power spectrum is ob-
tained by the log operator on the power magnitude spectrograms
and cutting off the symmetrical parts.

4.3. Results and Discussions

Firstly, we systematically evaluate how the parameter αx affects
the performance of speech enhancement. αx is a smoothing
factor and determines the updating/holding speed of the observed
signals PSD, as shown in Eq (6). Excessively large αx restricts
the update of the observed signals PSD and cannot timely track
the speech signal and follow the varying acoustic environment.
While excessively small αx cannot smooth the noise signal in
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Figure 3: The performances using various smoothing factors αx

in noise-matched and noise-unmatched conditions.

the mixture signals. Therefore, its choice is essential to correctly
update the observed signal PSD and should be appropriately set
to reach a compromise between smoothing the noise signals and
tracking the speech signals. In the experiments, we choose αx

from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. Figure 3
reports the average gains of SDR (gSDR) obtained by using
different smoothing factors αx in noise-matched (CHiME-4) and
noise-unmatched (NOISEX-92) conditions, respectively. The
gSDR can be computed as follows:

gSDR(ỹ, y, x) = SDR(ỹ, y)− SDR(x, y), (10)

where ỹ is the enhanced speech and the gSDR reflects the im-
provement of overall performance. It can be seen that the pro-
posed speech enhancement system achieves best performance
near αx = 0.8, in either noise-matched or noise-unmatched con-
dition, which is very close to the calculated value in theory [9].
Hence, we set αx to 0.8 in the following experiments.

Secondly, we systematically evaluate the performances of
the proposed model (DNTN) and the comparisons (GRU-IRM
and GRU-MAG). Table 1 reports the speech enhancement per-
formances of different models in noise-matched and noise-
unmatched conditions, respectively. We observe that all models
have significantly enhanced speech in both noise-matched and
noise-unmatched conditions, but GRU-MAG and DNTN consis-
tently and significantly outperform GRU-IRM. This is because
GRU-MAG and DNTN directly optimize an actual enhancement
objective rather than ideal masks which is used as an intermedi-
ate target by GRU-IRM. It also suggests that the masking-based
magnitude-approximated objective outperforms the direct mask-
approximated objective. We also observe the proposed DNTN
has achieved roughly equivalent performance with GRU-MAG
in noise-matched condition, and even has slight improvements
on SDR, SAR, gSDR and PESQ. However, in noise-unmatched
condition, the proposed DNTN achieves best performances on
various evaluation metrics and significantly outperforms GRU-
MAG. It has indicated that DNTN has a better generalization
ability to unseen noise, which is extremely important for practi-
cal applications. The better generalization is mainly attributable
to the utilization of the domain knowledge of signal process. The
proposed DNTN incorporates the powerful perceptual capabil-
ities of deep learning to speech and noise in the conventional
speech enhancement framework based on signal processing. The
hybrid scheme not only exploits speech spectrum characteristics,
but also utilizes noise statistics, which concentrate the strength-
s of both deep learning and signal processing techniques for
speech enhancement. In fact, the recursive smoothing-based
noise tracking component can be regarded as a regularization
term of DNTN.

Table 1: The speech enhancement performances of different
models in noise-unmatched and noise-matched conditions.

U
nm

at
ch

ed

Models SDR SIR SAR gSDR PESQ
Mixture 5.03 5.03 − − 1.26

GRU-IRM 6.29 7.53 8.97 1.26 1.37
GRU-MAG 8.00 10.67 10.28 2.98 1.36

DNTN 9.00 12.08 10.65 3.97 1.41

M
at

ch
ed Mixture 3.86 3.86 − − 1.17

GRU-IRM 6.95 8.75 8.67 3.10 1.34
GRU-MAG 8.54 11.63 10.62 4.69 1.34

DNTN 8.58 11.19 11.25 4.73 1.36

Finally, we exhibit some visible results of DNTN to further
make each component of DNTN clear as shown in Figure 4.
Although there is no ideal SPP as the supervised target, the GRU
automatically learns the SPP from noisy signals. We also observe
that the output of feed-forward network seems to reflect the
smoothness of the noise. It indicates that the domain knowledge
of signal processing has instructed neural networks what to learn.
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Figure 4: The speech enhancement results of DNTN. (a-d) are
the log power spectrums of clean speech, noise, mixture signal-
s and enhanced speech, respectively. (e) is the output of the
GRU, which looks like the speech presence probability. (f) is the
output of the feed-forward network, which seems to reflect the
smoothness of the noise.

5. Conclusions
In this paper, we proposed a novel deep noise tracking network,
which incorporates the powerful perceptual capabilities of deep
learning in the mature speech enhancement framework based
on signal processing. The deep learning and signal processing
components are jointly optimized by a spectrum approximation
objective. We demonstrate that the hybrid signal processing/deep
learning approach significantly outperforms a pure deep learning-
based approach and has a better generalization to unseen acous-
tic environments. We believe that this technique can be easily
extended to multichannel speech enhancement, which will be
explored in the future.
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