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Abstract
Impulse-like characteristics of excitation occur at the glottal
closure instant (GCI) due to sharp closure of the vibrating vo-
cal folds in each glottal cycle. The GCIs are detected from the
excitation component of the speech signal, and the excitation
component is derived using inverse filtering or its variants. In
this paper we propose a method for GCI detection based on sin-
gle frequency filtering (SFF) of the speech signal. The SFF out-
put has high signal-to-noise ratio (SNR) property in speech re-
gions. The variance (across frequency) contour computed from
the SFF output show rapid changes around the GCIs, and these
rapid changes can be observed even when the speech signal is
degraded. Thus the GCI locations can be extracted even from
degraded speech using the SFF analysis. The robustness of
the method is demonstrated for several cases of degradation of
speech signal.
Index Terms: Glottal closure instant (GCI), single frequency
filtering (SFF), zero frequency filtering (ZFF).

1. Introduction
The glottal closure instant (GCI) is the instant of significant ex-
citation of the vocal tract, and it occurs due to rapid closure of
the vocal folds in each glottal cycle. The GCI is followed by
glottal closure region in a glottal cycle, which is useful to es-
timate the characteristics of the supraglottal vocal tract system.
Knowledge of the GCI is also useful for prosody manipulation
in voice conversion [1] and also in text-to-speech generation
[2]. The signal around the GCI corresponds to high signal-to-
noise (SNR) region within a glottal cycle, and hence features
extracted around the GCIs are more robust [3]. Thus determi-
nation of GCIs from speech signals, especially when the speech
is degraded is useful in several applications [4].

Several attempts have been made for extracting GCIs from
speech signals [5, 4]. Among them the peaks in the error signal
of linear prediction (LP) analysis have been exploited in many
studies [1, 6]. Methods have been developed based on group
delay functions for estimating the GCIs [7, 8, 9]. The Yet an-
other GCI/GOI algorithm (YAGA) estimated the GCIs using the
phase slope function, followed by dynamic programmimg [8].
Lines of maximum amplitude (LoMA) method uses local max-
imum derived from wavelet transform across multiple scales,
followed by dynamic programming [10]. The multi-scale mech-
anism (MSM) approach relies on precise estimation of local pa-
rameters, called singularity exponent (SE) [11]. The samples
with lowest SE values correspond to the GCIs. Zero frequency
filtering (ZFF) is another approach proposed for GCI detection
[12]. Most of these methods have also been studied for varying
levels and types of degradations in the speech signals.

In this paper we propose a method of GCI detection in de-
graded speech based on recently proposed single frequency fil-

tering (SFF) method [13]. The SFF output signal at each fre-
quency will have several high SNR regions due to coherence of
speech samples in a sequence and lack of coherence of noise
samples. The presence of high SNR regions in the SFF out-
puts was exploited for speech and nonspeech detection, after
suitably compensating for the noise in the degraded speech sig-
nal [13]. The SFF method was also used for extracting GCIs
[14], locating burst onsets [15] and fundamental frequency ex-
traction [16, 17]. The significance of the phase of SFF output
of speech is also examined recently in [18]. In this paper the
noise compensated SFF outputs are exploited for GCI detection
in degraded conditions.

The paper is organized as follows. Section 2 gives an out-
line of the SFF method and the procedure for obtaining noise-
compensated SFF outputs. Section 3 discusses the proposed
method for GCI detection, which uses ZFF analysis for initial
estimation. Section 4 describes the database for evaluation, and
methods and evaluation for comparison. Section 5 discusses the
results of evaluation. Section 6 gives a summary of the paper.

2. Single frequency filtering analysis of
speech

The differenced speech signal (x[n] = s[n]− s[n− 1]) is mul-
tiplied by the complex sinusoid ejω̂kn, and the resulting fre-
quency shifted signal xk[n] = x[n]ejω̂kn is filtered through a
single pole resonator, whose transfer function is given by [13]

H(z) =
1

1 + rz−1
, (1)

where r ≈ 1 , i.e., the root is close to the unit circle on the
negative real axis in the z-plane. The output of the filter is given
by

yk[n] = −ryk[n− 1] + xk[n]. (2)

The value of r is chosen as 0.995 in this study. Here ω̂ = π −
ωk, where ωk = 2πfk

fs
, and fk is the desired frequency and fs

is the sampling frequency. The envelope of the kth sinusoidal
component of the signal is given by

ek[n] =
√
y2kr[n] + y2ki[n], (3)

where yk[n] = ykr[n] + jyki[n]. The envelope ek[n] is ob-
tained at frequencies fk, k = 1, 2, ...,K, where fk = k∆f ,
and ∆f is the frequency spacing. For ∆f = 10 Hz, the num-
ber of frequencies (K) in the interval 0-4 kHz is 400. Thus we
get 400 envelopes of the SFF outputs.

As indicated in [13], the SNR of speech signal is higher
in particular frequency regions and in particular time segments.
For degraded speech signal, the noise power is estimated for
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Figure 1: (a) Clean speech signal. (b) Speech signal degraded
by white noise at SNR = 0 dB. (c) SFF envelopes for (b). (d)
Weighted SFF envelopes for (b).

each frequency (fk) by computing the mean (µk) of the lowest
20% of ek[n] values.

The normalized weight values (wk), for noise compensa-
tion of the envelopes are given by [13]

wk =

1
µk∑K
l=1

1
µl

, (4)

where K is the number of frequencies. The noise compensated
envelopes (êk[n]) are obtained by multiplying the envelopes
ek[n] with the corresponding weights wk. That is

êk[n] = wkek[n], k = 1, 2, ...,K. (5)

The 20% lowest values of ek[n] are chosen under the assump-
tion that speech utterance has at least 20% of silence. Figs. 1(c)
and 1(d) show the 3-D plots of SFF envelopes and weighted
SFF envelopes for clean speech signal (Fig. 1(a)) and for the
signal corrupted by white noise at SNR = 0 dB (Fig. 1(b)), re-
spectively. Note that the speech regions are emphasized in the
noise compensated weighted envelopes êk[n] (Fig. 1(d)).

3. Detection of glottal closure instants

The noise compensated envelopes êk[n] are normalized across
frequency. The normalized envelopes ēk[n] are given by

ēk[n] =
êk[n]∑K
l=1 êl[n]

. (6)

The variance (σ2[n]) of the normalized envelopes is computed
as follows:

σ2[n] =
1

K

K∑

k=1

(ēk[n]− µ)2, (7)

where µ = 1
K

K∑
k=1

ēk[n] = 1
K

, as the envelopes are normalized

across frequency.

The variance contour decreases rapidly to a minimum value
around GCI [14]. Thus the slope of the variance contour is least
at GCI. GCIs are detected by locating the instant of the lowest
slope value of the variance contour in each glottal cycle. The
slope value of the variance contour at each time instant is ob-
tained by computing the slope of the neighboring three values.
Initially, an approximate location of the GCI is obtained using
the zero frequency filtering (ZFF) method [12]. If the minimum
of the slope is within 2 msec of the initial estimate of GCI within
a glottal cycle, then the location of the minimum slope is used
as GCI, otherwise the initial estimate itself is used as GCI. This
is referred as proposed method (PM) in the paper.

Figs. 2(c) and 2(d) show the variance (σ2[n]) and slope
values, respectively, computed from the clean speech envelopes
ek[n]. Fig. 2(a) shows the differenced electroglottograph
(dEGG) signal as reference (ground truth) for locating GCIs.
Notice that the variance (σ2[n]) shows discontinuities in regions
around the GCIs (Fig. 2(c)). The values of the slope have mini-
mum values corresponding to the locations of GCIs (Fig. 2(d)).

Fig. 2(e) shows the speech signal degraded with white noise
at 0 dB SNR for the corresponding clean speech in Fig. 2(b).
Figs. 2(f) to 2(i) show the variance (σ2[n]) and slope con-
tours derived from the uncompensated envelopes (ek[n]) and
the noise compensated envelopes (êk[n]). Notice that the val-
ues of the variance (σ2[n]) and slope derived from the compen-
sated envelopes (êk[n]) show better evidence of GCIs for the
degraded speech signal (Figs. 2(h) and 2(i)), when compared to
the variance and slope values derived from the uncompensated
envelopes (ek[n]) (Figs. 2(f) and 2(g)).

The effectiveness of noise compensation for GCI detection
for various types of degradations is illustrated in Fig. 3. In this
figure, the slope values derived from the noise compensated en-
velopes (êk[n]) for five different types of degradations at 10 dB
SNR are shown along with the dEGG signal as ground truth for
GCI locations. Fig. 3(a) shows the dEGG signal, Figs. 3(b)
to 3(f) show the slope contours derived from the variance con-
tours for following five degradations: white, babble, machine-
gun, f16, and hfchannel, respectively. From Figs. 3(b) to 3(f), it
is evident that slope contours derived from noise compensated
envelopes provide good evidence of locations of GCIs.
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Figure 2: (a) dEGG signal. (b) Clean speech signal. (c, d) Vari-
ance (σ2[n]) and slope computed from SFF envelopes derived
from clean speech. (e) Speech signal degraded by white noise
at 0 dB SNR. (f, g) Variance and slope computed from SFF en-
velopes of degraded speech. (h, i) Variance and slope computed
from the compensated SFF envelopes of degraded speech.

4. Comparison of different GCI detection
methods across different degradations

4.1. Database

GCI detection methods are evaluated on speech signals taken
from CMU ARCTIC database [19] which contains simultane-
ous EGG recordings. Samples corresponding to different types
of noises are taken from NOISEX database [20]. Three hun-
dred random utterances are taken from phonetically balanced
sentences, spoken by three speakers: BDL (US male), JMK (US
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Figure 3: (a) dEGG signal. Values of slope derived from the
compensated SFF envelopes for the speech degraded at 10 dB
SNR with (b) white noise, (c) babble noise, (d) machinegun
noise, (e) f16 noise, and (h) hfchannel noise.

male) and SLT (US female). The duration of each utterance is
approximately 3 sec. The noises are added at SNRs of 0 dB and
10 dB. All the speech signals are downsampled to 8 kHz.

4.2. Methods used for comparison

The following two methods are used for comparison:

• MSM method: In this, the subset of samples with lowest
singularity exponent values are used to detect the GCIs.
It relies on the precise estimation of multiscale param-
eter (singularity exponent) at each instant in the signal
domain [11].

• YAGA method: In this, the information of the voice
source signal (which is obtained from iterative adaptive
inverse filtering (IAIF)) and stationary wavelet transform
across different wavelet scales are used. The discon-
tinuities are detected using group delay function, and
the GCI candidates are measured as negative going zero
crossings. The falsely detected GCIs are then removed
using the M-best dynamic programming approach [8].
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Table 1: Results of GCI detection methods for different types of
degradations at SNRs of 0 dB and 10 dB.

Noise (SNR) Method IDR1% MR% FAR% IDR2%
PM (UW) 96.46 2.24 1.29 19.62
PM (W) 96.35 2.32 1.33 30.81

white(0) MSM 78.17 3.38 18.45 34.72
YAGA 78.61 0.60 20.78 30.34
PM (UW) 98.35 0.99 0.66 18.69
PM (W) 98.33 1.03 0.64 47.25

white(10) MSM 90.33 1.89 7.78 54.23
YAGA 92.30 0.53 7.18 53.16
PM (UW) 89.99 2.52 7.49 19.16
PM (W) 90.37 2.32 7.31 44.44

babble(0) MSM 81.25 3.31 15.44 35.68
YAGA 77.39 0.87 21.74 41.57
PM (UW) 97.52 0.95 1.53 34.88
PM (W) 97.71 0.90 1.39 66.27

babble(10) MSM 90.71 1.86 7.43 51.67
YAGA 93.80 0.64 5.56 65.13
PM (UW) 92.16 5.21 2.63 51.29
PM (W) 90.37 2.32 7.31 44.44

machinegun (0) MSM 81.25 3.31 15.44 35.68
YAGA 77.39 0.87 21.74 41.57
PM (UW) 96.06 2.41 1.53 57.19
PM (W) 96.28 2.36 1.36 78.00

machinegun (10) MSM 93.41 2.49 4.11 55.86
YAGA 96.12 0.93 2.95 86.33
PM (UW) 73.52 8.96 17.52 14.64
PM (W) 74.11 8.78 17.11 36.59

f16 (0) MSM 80.60 3.52 15.88 35.65
YAGA 67.38 1.96 30.66 36.40
PM (UW) 96.91 2.11 0.98 28.14
PM (W) 97.19 2.01 0.80 60.94

f16 (10) MSM 90.91 1.97 7.13 53.05
YAGA 92.44 0.71 6.86 61.23
PM (UW) 98.34 0.84 0.82 24.63
PM (W) 98.33 0.85 0.81 37.00

hfchannel (0) MSM 77.19 3.68 19.13 32.08
YAGA 84.39 0.54 15.07 28.23
PM (UW) 98.61 0.77 0.61 22.65
PM (W) 98.75 0.72 0.53 52.54

hfchannel (10) MSM 89.67 2.02 8.32 51.82
YAGA 92.64 0.56 6.80 49.92
PM (UW) 83.44 14.55 2.01 11.66
PM (W) 83.74 14.48 1.78 25.21

buccaneer1 (0) MSM 79.77 3.18 17.05 34.37
YAGA 78.46 1.57 19.97 31.14
PM (UW) 96.70 2.27 1.03 20.17
PM (W) 96.80 2.21 0.98 52.77

buccaneer1 (10) MSM 90.56 1.93 7.51 52.28
YAGA 93.24 0.71 6.05 54.50
PM (UW) 88.31 9.63 2.06 14.38
PM (W) 88.58 9.53 1.89 28.25

buccaneer2 (0) MSM 80.60 3.36 16.04 38.92
YAGA 63.40 1.29 35.32 38.17
PM (UW) 97.85 1.39 0.77 22.63
PM (W) 97.89 1.33 0.78 54.45

buccaneer2 (10) MSM 90.79 2.06 7.16 55.36
YAGA 91.89 0.60 7.51 60.38

4.3. Evaluation measures

The following measures are used for evaluation of GCI detec-
tion methods [9].

• Identification rate1 (IDR1) : The percentage of glottal
cycles for which exactly one GCI is detected.

• Miss rate (MR): The percentage of glottal cycles for
which no GCI is detected.

• False alarm rate (FAR): The percentage of glottal cycles
for which more than one GCI is detected.

• Identification rate2 (IDR2): Identification rate1 (IDR1)
within the range of -0.25 to 0.25 msec.

For better performance, IDR1 and IDR2 values should be
high with low MR and FAR. The IDR2 measure indicates the
percentage of correctly identified GCIs which are closer to the
reference GCIs.

5. Results
The proposed method (PM) has been evaluated without and
with noise compensation, indicated by PM (UW), PM (W),
respectively. Table 1 shows the results obtained by the pro-
posed methods in comparison with other methods across dif-
ferent types of noises at SNR levels of 0 dB and 10 dB. From
the results, it can be observed that the proposed methods give
comparable or better performance compared to other methods
in most cases. Among the proposed methods, the noise com-
pensation based method PM(W) has significantly increased the
IDR2 value in comparison with the IDR2 value of PM(UW),
while both the methods give similar IDR1 values. This is be-
cause noise compensation highlights the discontinuities due to
impulse-like excitation at GCIs by reducing the spurious noise
peaks. It can also be observed that the proposed methods gave
good performance for different stationary and nonstationary
noises in comparison with MSM and YAGA methods.

6. Summary
In this study, a method for detection of glottal closure instants
(GCIs) in degraded speech conditions was proposed using sin-
gle frequency filtering (SFF) method. The impulse-like discon-
tinuities of the GCIs were exploited using the slope of the vari-
ance computed from SFF envelopes. Performance of the pro-
posed method was compared with existing methods, and it was
found that the performance is comparable or better for several
cases of degradation. The performance of the proposed method
improved significantly with the incorporation of noise compen-
sation.
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